精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四棱錐中,底面為直角梯形,,,,的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

【答案】I)見解析;

II

【解析】

)取BC的中點G,連接FG,EG,證明四邊形EGCD為平行四邊形,得EG∥平面ACD,再證明FG∥平面ACD,可得平面EFG∥平面ACD,從而得到EF∥平面ACD

)求解三角形證明BAAE,取BE的中點H,連接AH,HC,證明AH⊥平面BCDE.以H為坐標原點,以過點H且平行于CD的直線為x軸,以過點H且平行于BC的直線為y軸,HA所在直線為z軸建立空間直角坐標系,求出平面ACD的一個法向量,再求出直線BC的方向向量,由兩向量所成角的余弦值可得直線BC與平面ACD所成角的正弦值.

解:證明:(I)作中點,連接,則

,四邊形為平行四邊形,

,則平面,

的中點,,則平面,

,平面平面

平面,

平面

II,,,

,則,

,則

中點,連接,

,

,,即,

,平面.

為坐標原點,以過點且平行于的直線為軸,以過點且平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系,

可得,,,

為平面的一個法向量,

可得,

直線的方向向量,

與平面所成角為,

,

綜上,直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,得到甲、乙兩位學生成績的莖葉圖.

1)現要從中選派一人參加數學競賽,對預賽成績的平均值和方差進行分析,你認為哪位學生的成績更穩定?請說明理由;

2)若將頻率視為概率,求乙同學在一次數學競賽中成績高于84分的概率;

3)求在甲同學的8次預賽成績中,從不小于80分的成績中隨機抽取2個成績,列出所有結果,并求抽出的2個成績均大于85分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當為何值時,軸為曲線的切線;

2)用表示、中的最大值,設函數,當時,討論零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在底面為菱形的四棱柱中,平面.

1)證明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列和等比數列中, 項和.

(1)若 ,求實數的值;

(2)是否存在正整數,使得數列的所有項都在數列中?若存在,求出所有的,若不存在,說明理由;

(3)是否存在正實數,使得數列中至少有三項在數列中,但中的項不都在數列中?若存在,求出一個可能的的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若,討論函數的單調性;

(Ⅱ)若方程沒有實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓是橢圓內任一點.設經過的兩條不同直線分別于橢圓交于點的斜率分別為

1)當經過橢圓右焦點且中點時,求:

①橢圓的標準方程;

②四邊形面積的取值范圍.

2)當時,若點重合于點,且.求證:直線過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解高中學生對數學課是否喜愛是否和性別有關,隨機調查220名高中學生,將他們的意見進行了統計,得到如下的列聯表.

喜愛數學課

不喜愛數學課

合計

男生

90

20

110

女生

70

40

110

合計

160

60

220

1)根據上面的列聯表判斷,能否有的把握認為喜愛數學課與性別有關;

2)為培養學習興趣,從不喜愛數學課的學生中進行進一步了解,從上述調查的不喜愛數學課的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1男生的概率.

參考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線)的焦點到點的距離為.

1)求拋物線的方程;

2)過點作拋物線的兩條切線,切點分別為,,點分別在第一和第二象限內,求的面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视