精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線)的焦點到點的距離為.

1)求拋物線的方程;

2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.

【答案】12

【解析】

1)因為,可得,即可求得答案;

2)分別設、的斜率為,切點,,可得過點的拋物線的切線方程為,聯立直線方程和拋物線方程,得到關于一元二次方程,根據,求得,,進而求得切點,坐標,根據兩點間距離公式求得,根據點到直線距離公式求得點到切線的距離,進而求得的面積.

1,

解得,

拋物線的方程為.

2)由題意可知,、的斜率都存在,分別設為,切點

,

過點的拋物線的切線

,消掉,

可得,

,即,

解得,,

,

,

同理可得,

,

,

切線的方程為

到切線的距離為,

,

的面積為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,的中點.

(Ⅰ)證明:∥平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(mR)的導函數為

1)若函數存在極值,求m的取值范圍;

2)設函數(其中e為自然對數的底數),對任意mR,若關于x的不等式(0,)上恒成立,求正整數k的取值集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若函數有兩個極值點,求的取值范圍;

2)若兩個極值點,試判斷的大小關系并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年全國兩會,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協商會議第十三屆全國委員會第二次會議,分別于201935日和33日在北京召開.為了了解哪些人更關注兩會,某機構隨機抽取了年齡在歲之間的200人進行調查.并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區間內的人分別稱為青少年人中老年人經統計青少年人中老年人的人數之比為,其中青少年人中有40人關注兩會中老年人中關注兩會和不關注兩會的人數之比是

1)求圖中a,b的值;

2)現采用分層抽樣在中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是中老年人的概率是多少?

3)根據已知條件,完成下面的列聯表,并根據此統計結果判斷:能否有的把握認為中老年人青少年人更加關注兩會?

關注

不關注

合計

青少年人

中老年人

合計

P(K2k0)

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】健身館某項目收費標準為每次60元,現推出會員優惠活動:具體收費標準如下:

現隨機抽取了100為會員統計它們的消費次數,得到數據如下:

假設該項目的成本為每次30元,根據給出的數據回答下列問題:

1)估計1位會員至少消費兩次的概率

2)某會員消費4次,求這4次消費獲得的平均利潤;

3)假設每個會員每星期最多消費4次,以事件發生的頻率作為相應事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,已知PA平面ABCD,且四邊形ABCD為直角梯形,ABC=∠BAD,PAAD=2,ABBC=1,點M、E分別是PAPD的中點

(1)求證:CE//平面BMD

(2)Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點P40)的動直線與拋物線C交于點A,B,且(點O為坐標原點).

1)求拋物線C的方程;

2)當直線AB變動時,x軸上是否存在點Q使得點P到直線AQ,BQ的距離相等,若存在,求出點Q坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數,討論的單調性;

(Ⅱ)若函數的導數的兩個零點從小到大依次為,證明:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视