精英家教網 > 高中數學 > 題目詳情

【題目】求函數f(x)= (a>0且a≠1)的值域.

【答案】解:令t=2x﹣x2=﹣(x﹣1)2+1,

則t∈(0,1],

當0<a<1時,f(x)≥loga1=0

當a>1時,f(x)≤loga1=0

故當0<a<1時,f(x)的值域為[0,+∞),

當a>1時,f(x)的值域為(﹣∞,0]


【解析】令t=2x﹣x2=﹣(x﹣1)2+1,t∈(0,1],進行換元,當0<a<1時,f(x)≥loga1=0,當a>1時,f(x)≤loga1=0,從而得出f(x)的值域.
【考點精析】解答此題的關鍵在于理解函數的值域的相關知識,掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的,以及對復合函數單調性的判斷方法的理解,了解復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分.

(1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面半徑;
(2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知X的分布列為

X

﹣1

0

1

P

設y=2x+3,則E(Y)的值為(
A.
B.4
C.﹣1
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a、b、c三個實數成等差數列,則直線bx+ay+c=0與拋物線 的相交弦中點的軌跡方程是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數λ>0,設函數f(x)=eλx
(Ⅰ)當λ=1時,求函數g(x)=f(x)+lnx﹣x的極值;
(Ⅱ)若對任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的偶函數滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調遞減,給出以下四個命題:
①f(2)=0;
②x=﹣4為函數y=f(x)圖象的一條對稱軸;
③函數y=f(x)在[8,10]單調遞增;
④若方程f(x)=m在[﹣6,﹣2]上的兩根為x1 , x2 , 則x1+x2=﹣8.
上述命題中所有正確命題的序號為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是(  )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點,求證:△PF2Q的周長是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點.

(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视