精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)討論函數fx)的極值點的個數;

2)若fx)有兩個極值點,,證明:.

【答案】1)見解析(2)見解析

【解析】

1)求得函數的導數,按、三種情況分類討論,得出函數的單調性,進而得出函數的極值;

2)由(1)知,當時,極值點是方程的兩根,化簡得,設,利用導數求得函數的單調性與最值,即可求解.

1)由題意,函數,

,

i)若時;

時,,函數單調遞減;

時,,函數單調遞增,

所以當,函數取得極小值,的一個極小值點;

ii)若時,則,即時,此時是減函數,無極值點,

時,則,令,解得,

時,,當時,,

取得極小值,在取得極大值,所以有兩個極值點,

綜上可知:(i時,僅有一個極值點;(ii).時,無極值點;

(iii),有兩個極值點.

2)由(1)知,當且僅當時,有極小值點和極大值點,

是方程的兩根,∴,

,

,則,

時,是減函數,,

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形, , , , 、分別是棱、、的中點.

(1)證明:直線平面;

(2)求證:面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標記有數字,,,這三張卡片除標記的數字外完全相同。隨機有放回地抽取次,每次抽取張,將抽取的卡片上的數字依次記為,.

)求抽取的卡片上的數字滿足的概率;

)求抽取的卡片上的數字,不完全相同的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (是自然對數的底數)

(1)求證:

(2)若不等式上恒成立,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大小;

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方形中,點EF分別為邊,的中點,將分別沿、所在的直線進行翻折,在翻折的過程中,下列說法錯誤是(

A.存在某個位置,使得直線與直線所成的角為

B.存在某個位置,使得直線與直線所成的角為

C.A、C兩點都不可能重合

D.存在某個位置,使得直線垂直于直線

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解我市特色學校的發展狀況,某調查機構得到如下統計數據:

年份

2014

2015

2016

2017

2018

特色學校(百個)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根據上表數據,計算的相關系數,并說明的線性相關性強弱(已知:,則認為線性相關性很強;,則認為線性相關性一般;,則認為線性相關性較弱);

(Ⅱ)求關于的線性回歸方程,并預測我市2019年特色學校的個數(精確到個).

參考公式: ,,,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與斜率為且過拋物線焦點的直線交于兩點,滿足弦長.

1)求拋物線的標準方程;

2)已知為拋物線上任意一點,為拋物線內一點,求的最小值,以及此時點的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视