【題目】拋物線C:y2=2px(p>0)的焦點是F,直線y=2與拋物線C的交點到F的距離等于2.
(1)求拋物線C的方程;
(2)過點(2,0)斜率為k的直線l交拋物線C于A、B兩點,O為坐標原點,直線AO與直線x=﹣2相交于點P,求證:BP∥x軸.
【答案】(1)y2=4x;(2)見解析
【解析】
(1)求出直線y=2與拋物線C的交點的橫坐標,應用焦半徑公式,即可求解;
(2)設出直線l的方程,與拋物線方程聯立,建立A、B縱坐標關系,再利用三點共線,求出
縱坐標關系,即可證明結論.
(1)由題意得直線與拋物線的交點坐標:(,2),
所以2 且p>0解得:p=2,
所以拋物線C的方程:y2=4x;
(2)由題意得:直線l的斜率不為零,
設直線l的方程:x=my+2,
代入拋物線方程得:y2﹣4my﹣8=0,
設A(x0,y0),B(x',y'),y0y'=﹣8,y',
所以B(x',),直線OA的方程:y
x
x,
與x=﹣2的交點P(﹣2,),
BP∥x軸.
科目:高中數學 來源: 題型:
【題目】已知是橢圓
的左右頂點,
點為橢圓
上一點,點
關于
軸的對稱點為
,且
.
(1)若橢圓經過圓
的圓心,求橢圓
的方程;
(2)在(1)的條件下,若過點的直線與橢圓
相交于不同的
兩點,設
為橢圓
上一點,且滿足
(
為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照,
,
,
,
分為5組,其頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計這種植物果實重量的平均數和方差
(同一組中的數據用該組區間的中點值作代表);
(3)已知這種植物果實重量不低于32.5克的即為優質果實,用樣本估計總體.若從這種植物果實中隨機抽取3個,其中優質果實的個數為,求
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費
元;重量超過
的包裹,除
收費
元之外,超過
的部分,每超出
(不足
,按
計算)需再收
元.該公司將最近承攬的
件包裹的重量統計如下:
包裹重量(單位: | |||||
包裹件數 |
公司對近天,每天攬件數量統計如下表:
包裹件數范圍 | |||||
包裹件數 (近似處理) | |||||
天數 |
以上數據已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內恰有
天攬件數在
之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過
件,工資
元.公司正在考慮是否將前臺工作人員裁減
人,試計算裁員前后公司每日利潤的數學期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若函數在
上單調遞增,求實數
的取值范圍;
(2)若直線是函數
圖象的切線,求
的最小值;
(3)當時,若直線
是函數
圖象有兩個交點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物探測器在水中逆流行進時,所消耗的能量為E=cvnT,其中v為行進時相對于水的速度,T為行進時的時間(單位:h),c為常數,n為能量次級數,如果水的速度為4km/h,該生物探測器在水中逆流行進200km.
(1)求T關于v的函數關系式;
(2)①當能量次級數為2時,求探測器消耗的最少能量;
②當能量次級數為3時,試確定v的大小,使該探測器消耗的能量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊長分別為a、b、c,且acosB+bcosA=2ccosB.
(1)若a=3,,求c的值;
(2)若,求f(A)的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com