精英家教網 > 高中數學 > 題目詳情

【題目】我們知道,地球上的水資源有限,愛護地球、節約用水是我們每個人的義務與責任.某市政府為了對自來水的使用進行科學管理,節約水資源,計劃確定一個家庭年用水量的標準.為此,對全市家庭日常用水量的情況進行抽樣抽查,獲得了個家庭某年的用水量(單位:立方米),統計結果如下表及圖所示.

分組

頻數

頻率

25

0.19

50

0.23

0.18

5

1)分別求出,的值;

2)若以各組區間中點值代表該組的取值,試估計全市家庭年均用水量;

3)從樣本中年用水量在(單位:立方米)的5個家庭中任選3個,作進一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個家庭的年用水量都不相等).

【答案】1,2(立方米)(3

【解析】

1)觀察圖和表,用水量在內的頻數是50,頻率是,由此可求得樣本容量,再由相應的頻率求出;

(2)用每組中點值代表這組的估計值計算均值.

(3)可把五個家庭編號用列舉法寫出任取3個各種情況,同時得用水量最多的家庭被選中的情況,計數后可得概率.

解:(1)用水量在內的頻數是50,頻率是,

,

用水量在內的頻率是,則,

用水量在內的頻率是,則;

2)估計全市家庭年均用水量為

;

3)設代表年用水量從多到少的5個家庭,

從中任選3個,總的基本事件為,共10個,

其中包含的有,共6個,

所以,即年用水量最多的家庭被選中的概率是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若數列滿足,且,則

①數列是等比數列;

②滿足不等式:

③若函數R上單調遞減,則數列是單調遞減數列;

④存在數列中的連續三項,能組成三角形的三條邊;

⑤滿足等式:.

正確的序號是________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數,),已知直線的方程為.

(1)設是曲線上的一個動點,當時,求點到直線的距離的最小值;

(2)若曲線上的所有點均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以為首項的數列滿足:

1)當時,求數列的通項公式;

2)當,時,試用表示數列100項的和;

3)當是正整數),,正整數時,判斷數列,,,是否成等比數列?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《朗讀者》是一檔文化情感類節目,以個人成長、情感體驗、背景故事與傳世佳作相結合的方式,選用精美的文字,用最平實的情感讀出文字背后的價值,深受人們的喜愛.為了了解人們對該節目的喜愛程度,某調查機構隨機調查了,兩個城市各100名觀眾,得到下面的列聯表.

非常喜愛

喜愛

合計

城市

60

100

城市

30

合計

200

完成上表,并根據以上數據,判斷是否有的把握認為觀眾的喜愛程度與所處的城市有關?

附參考公式和數據:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為實數.

1)當時,求函數上的最大值和最小值;

2)求函數的單調區間;

3)若函數的導函數上有零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

(1)當時,求曲線在點處切線的方程;

(2)當時,求函數的單調區間;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統,以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)萬元.

(1)若使每臺機器人的平均成本最低,問應買多少臺?

(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量q(m) (單位:件),已知傳統人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少百分之幾?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在點處的切線為,若函數滿足(其中為函數的定義域,當時,恒成立,則稱為函數的“轉折點”,已知函數在區間上存在一個“轉折點”,則的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视