【題目】如圖過拋物線的焦點
的直線依次交拋物線及準線于點
,若
,且
,則
( )
A.2B.C.3D.6
科目:高中數學 來源: 題型:
【題目】在發生某公共衛生事件期間,有專業機構認為該事件在一段時間內沒有發生大規模群體感染的標志是“連續10日,每天新增疑似病例不超過7人”.已知過去10日,、
、
三地新增疑似病例數據信息如下:
地:總體平均數為3,中位數為4;
地:總體平均數為2,總體方差為3;
地:總體平均數為1,總體方差大于0;
則、
、
三地中,一定沒有發生大規模群體感染的是__________地.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知圓和圓
的極坐標方程分別是
和
.
(1)求圓和圓
的公共弦所在直線的直角坐標方程;
(2)若射線:
與圓
的交點為O、P,與圓
的交點為O、Q,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
.
(1)求證:平面
;
(2)求異面直線與
所成角的大;
(3)點在線段
上,且
,點
在線段
上,若
平面
,求
的值(用含
的代數式表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數方程為
(t為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)若直線l與曲線C相交于A,B兩點.求
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某飲料廠生產兩種飲料.生產1桶
飲料,需該特產原料100公斤,需時間3小時;生產1桶
飲料需該特產原料100公斤,需時間1小時,每天
飲料的產量不超過
飲料產量的2倍,每天生產兩種飲料所需該特產原料的總量至多750公斤,每天生產
飲料的時間不低于生產
飲料的時間,每桶
飲料的利潤是每桶
飲料利潤的1.5倍,若該飲料廠每天生產
飲料
桶,
飲料
桶時(
)利潤最大,則
_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正四棱錐的底面邊長為
高為
其內切球與面
切于點
,球面上與
距離最近的點記為
,若平面
過點
,
且與
平行,則平面
截該正四棱錐所得截面的面積為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com