【題目】某人某天的工作是駕車從地出發,到
兩地辦事,最后返回
地,
,三地之間各路段行駛時間及擁堵概率如下表
路段 | 正常行駛所用時間(小時) | 上午擁堵概率 | 下午擁堵概率 |
1 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到擁堵,則在該路段行駛時間需要延長1小時.
現有如下兩個方案:
方案甲:上午從地出發到
地辦事然后到達
地,下午從
地辦事后返回
地;
方案乙:上午從地出發到
地出發到達
地,辦完事后返回
地.
(1)若此人早上8點從地出發,在各地辦事及午餐的累積時間為2小時,且采用方案甲,求他當日18點或18點之前能返回
地的概率.
(2)甲乙兩個方案中,哪個方案有利于辦完事后更早返回地?請說明理由.
【答案】(1);(2)采用甲方案能更早返回,理由見解析.
【解析】
(1)由題意可知能按時返回的充要條件是擁堵路段不超過兩段,則不能按時,返回時由三段擁堵,二者互為對立事件,利用對立事件的概率公式,即可求解.
(2)設某段路正常行駛時間為,擁堵的概率為
,可得該路段行駛時間
的分布列,利用公式求得期望.
(1)由題可知能按時返回的充要條件是擁堵路段不超過兩段,則不能按時返回時有三段路段擁堵,二者互為對立事件,記“不能按時返回為事件”則
,
所以能夠按時返回的概率,
(2)設某段路正常行駛時間為,擁堵的概率為
,
則該路段行駛時間的分布列為
行駛時間 | ||
概率 |
故,
上午路段行駛時間期望值分別為1.3小時2.2小時、3.3小時,
下午路段行駛時間期望值分別為1.6小時2.7小時3.9小時,
設采用甲方案所花費總行駛時間為,則
小時,
設采用乙方案所花費總行駛時間為Z,則EZ=3.3+2.7+1.6=7.6小時,
因此采用甲方案能更早返回.
科目:高中數學 來源: 題型:
【題目】某市政府為減輕汽車尾氣對大氣的污染,保衛藍天,鼓勵廣大市民使用電動交通工具出行,決定為電動車(含電動自行車和電動汽車)免費提供電池檢測服務.現從全市已掛牌照的電動車中隨機抽取100輛委托專業機構免費為它們進行電池性能檢測,電池性能分為需要更換、尚能使用、較好、良好四個等級,并分成電動自行車和電動汽車兩個群體分別進行統計,樣本分布如圖.
(1)采用分層抽樣的方法從電池性能較好的電動車中隨機抽取9輛,再從這9輛中隨機抽取2輛,求至少有一輛為電動汽車的概率;
(2)為進一步提高市民對電動車的使用熱情,市政府準備為電動車車主一次性發放補助,標準如下:①電動自行車每輛補助300元;②電動汽車每輛補助500元;③對電池需要更換的電動車每輛額外補助400元.試求抽取的100輛電動車執行此方案的預算;并利用樣本估計總體,試估計市政府執行此方案的預算.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,多面體是正三棱柱(底面是正三角形的直棱柱)
沿平面
切除一部分所得,其中平面
為原正三棱柱的底面,
,點D為
的中點.
(1)求證:平面
;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點,且滿足:①
與
(
為坐標原點)的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐平面ABCD,
,E為PD的中點,F在AD上且
.
(1)求證:CE//平面PAB;
(2)若PA=2AB=2,求四面體PACE的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠為提高生產效率,開展技術創新活動,提出了完成某項生產任務的兩種新的生產方式.為比較兩種生產方式的效率,選取名工人,將他們隨機分成兩組,每組
人.第一組工人用第一種生產方式,第二組工人用第二種生產方式.根據工人完成生產任務的工作時間(單位:
)繪制了如圖所示的莖葉圖(莖為十位數,葉為個位數):
(1)根據莖葉圖,估計兩種生產方式完成任務所需時間至少分鐘的概率,并對比兩種生產方式所求概率,判斷哪種生產方式的效率更高?
(2)將完成生產任務所需時間超過和不超過
的工人數填入下面的列聯表:
超過 | 不超過 | |
第一種生產方式 | ||
第二種生產方式 |
(3)根據(2)中的列聯表,能否有的把握認為兩種生產方式的效率有差異?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征(
)等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒(
)是以前從未在人體中發現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有n()份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗n次.
方式二:混合檢驗,將其中k(且
)份血液樣本分別取樣混合在一起檢驗.
若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為.
假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p().現取其中k(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次數為
.
(1)若,試求p關于k的函數關系式
;
(2)若p與干擾素計量相關,其中
(
)是不同的正實數,
滿足且
(
)都有
成立.
(i)求證:數列等比數列;
(ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數的期望值更少,求k的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇跡之一,其中較為著名的是胡夫金字塔.令人吃驚的并不僅僅是胡夫金字塔的雄壯身姿,還有發生在胡夫金字塔上的數字“巧合”.如胡夫金字塔的底部周長如果除以其高度的兩倍,得到的商為3.14159,這就是圓周率較為精確的近似值.金字塔底部形為正方形,整個塔形為正四棱錐,經古代能工巧匠建設完成后,底座邊長大約230米.因年久風化,頂端剝落10米,則胡夫金字塔現高大約為( )
A.128.5米B.132.5米C.136.5米D.110.5米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
與直線
相切,其中
,
,
是自然對數的底數.
(1)求實數的值;
(2)設函數在區間
內有兩個極值點.
①求的取值范圍;
②設函數的極大值和極小值的差為
,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com