精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=sinx-cosx且f′(x)是f(x)的導函數,若f′(α)=2f(α),則tan2α=______.
∵f(x)=sinx-cosx,
∴f'(x)=cosx+sinx,
∵f′(α)=2f(α),
∴cosα+sinα=2(sinα-cosα),
即sinα=3cosα,
∴tanα=3,
∴tan2α=
2tanα
1-tan2α
=
6
1-32
=
6
-8
=-
3
4
,
故答案為:-
3
4
;
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)若時有極值,求實數的值和的極大值;
(2)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義在R上的函數f(x)滿足f(4)=1,f′(x)為f(x)的導函數,已知函數y=f′(x)的圖象如圖所示.若正數a,b滿足f(2a+b)<1,則
a+2
b+2
的取值范圍是( 。
A.(
1
3
,2)
B.(-∞,
1
2
)∪(3,+∞)
C.(
1
2
,3)
D.(-∞,3)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知在R上可導的函數f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( 。
A.(-2,0)B.(-∞,-2)∪(-1,0)C.(-∞,-2)∪(0,+∞)D.(-2,-1)∪(0,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)是定義在R上的可導函數,其導函數記為f′(x),若對于任意實數x,有f(x)>f′(x),且y=f(x)-1為奇函數,則不等式f(x)<ex的解集為( 。
A.(-∞,0)B.(0,+∞)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知定義在R上的函數f(x),g(x)滿足f(x)g(x)=ax,且f′(x)g(x)+f(x)•g′(x)<0,f(1)g(1)+f(-1)g(-1)=
10
3
,若有窮數列{f(n)g(n)}(n∈N*)的前n項和等于
40
81
,則n等于______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,若存在唯一的零點,且,則的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的單調遞減區間是         .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若f(x)=sinα一cosα,則f′(α)等于( 。
A.cosαB.sinαC.sinα+cosαD.2sinα

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视