【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為
時,輸出的
的值;
(2)根據程序框圖,寫出函數(
)的解析式;并求當關于
的方程
有三個互不相等的實數解時,實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱柱的側棱與底面垂直,
,
,
,
分別是
,
的中點,點
在直線
上,且
.
(Ⅰ)證明:無論取何值,總有
;
(Ⅱ)當取何值時,直線
與平面
所成的角
最大?并求該角取最大值時的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某城市居民家庭年收入(萬元)和年“享受資料消費”
(萬元)進行統計分析,得數據如表所示.
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)請根據表中提供的數據,用最小二乘法求出關于
的線性回歸方程
.
(2)若某家庭年收入為18萬元,預測該家庭年“享受資料消費”為多少?
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二奧賽班N名學生的物理測評成績(滿分120分)分布直方圖如下,已知分數在100~110的學生數有21人。
(Ⅰ)求總人數N和分數在110~115分的人數n;
(Ⅱ)現準備從分數在110~115分的n名學生(女生占)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個學生的學習狀態,對其下一階段的學習提供指導性建議,對他前7次考試的數學成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。
數學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數學成績x是線性相關的,若該生的數學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數據其回歸線
的斜率和截距的最小二乘估計分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點與點
的距離和它到直線
:
的距離的比是
.
(1)求動點的軌跡
的方程;
(2)已知定點,若
,
是軌跡
上兩個不同動點,直線
,
的斜率分別為
,
,且
,試判斷直線
的斜率是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為
時,輸出的
的值;
(2)根據程序框圖,寫出函數(
)的解析式;并求當關于
的方程
有三個互不相等的實數解時,實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在校體育運動會中,甲乙丙三支足球隊進行單循環賽(即每兩隊比賽一場),共賽三場,每場比賽勝者得3分,負者得0分,沒有平局.在每場比賽中,甲勝乙的概率為甲勝丙的概率為
乙勝丙的概率為
(1)求甲隊獲第一名且丙隊獲第二名的概率;
(2)求在該次比賽中甲隊至少得3分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某建筑公司打算在一處工地修建一座簡易儲物間.該儲物間室內地面呈矩形形狀,面積為,并且一面緊靠工地現有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號彩鋼板價格為100元/米,整理地面及防雨布總費用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長度為
米.
(1)用表示修建儲物間的總造價
(單位:元);
(2)如何設計該儲物間,可使總造價最低?最低總造價為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線與圓C:
相交,截得的弦長為
.
(1)求圓C的方程;
(2)過原點O作圓C的兩條切線,與函數的圖象相交于M、N兩點(異于原點),證明:直線
與圓C相切;
(3)若函數圖象上任意三個不同的點P、Q、R,且滿足直線
和
都與圓C相切,判斷線
與圓C的位置關系,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com