【題目】設定義域為R的函數 (a,b為實數).
(1)若f(x)是奇函數,求a,b的值;
(2)當f(x)是奇函數時,證明對任何實數x,c都有f(x)<c2﹣3c+3成立.
【答案】
(1)解:∵f(x)是定義在R上的奇函數,
∴f(0)=0,
即 =0,
∴a=1,
∴ ,
∵f(1)=﹣f(﹣1),
∴ ,
∴b=2
(2)解:f(x)= =
=﹣
+
,
∵2x>0,
∴2x+1>1,0< <1,
從而﹣ <f(x)<
;
而c2﹣3c+3=(c﹣ )2+
≥
對任何實數c成立,
∴對任何實數x、c都有f(x)<c2﹣3c+3成立
【解析】(1)利用函數是奇函數,得到f(0)=0,從而建立方程可解a,b.(2)利用函數的奇偶性和指數函數的單調性,求出f(x)的最大值,和函數y=c2﹣3c+3最小值之間的關系,進行證明即可.
【考點精析】本題主要考查了函數的最值及其幾何意義和函數奇偶性的性質的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲担辉诠捕x域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響。對近六年的年宣傳費
和年銷售量
的數據作了初步統計,得到如下數據:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發現年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
即
。對上述數據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據所給數據,求關于
的回歸方程;
(2)規定當產品的年銷售量(噸)與年宣傳費
(萬元)的比值在區間
內時認為該年效益良好,F從這6年中任選3年,記其中選到效益良好年的數量為
,試求隨機變量
的分布列和期望。(其中
為自然對數的底數,
)
附:對于一組數據,其回歸直線
中的斜率和截距的最小二乘估計分別為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內部)以
邊所在直線為旋轉軸旋轉
得到的,
是
的中點.
()設
是
上的一點,且
,求
的大小;
()當
時,求二面角
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設乒乓球團體比賽的規則如下:進行5場比賽,除第3場為雙打外,其余各場為單打,參賽的每個隊選出3名運動員參加比賽,每個隊員打兩場,且第1,2場與第4,5場不能是某個運動員連續比賽.某隊有4名乒乓球運動員,其中 不適合雙打,則該隊教練安排運動員參加比賽的方法共有種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(Ⅰ)求點的坐標;
(Ⅱ)證明直線恒過定點,并求這個定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場欲經銷某種商品,考慮到不同顧客的喜好,決定同時銷售A、B兩個品牌,根據生產廠家營銷策略,結合本地區以往經銷該商品的大數據統計分析,A品牌的銷售利潤y1與投入資金x成正比,其關系如圖1所示,B品牌的銷售利潤y2與投入資金x的算術平方根成正比,其關系如圖2所示(利潤與資金的單位:萬元).
(1)分別將A、B兩個品牌的銷售利潤y1、y2表示為投入資金x的函數關系式;
(2)該商場計劃投入5萬元經銷該種商品,并全部投入A、B兩個品牌,問:怎樣分配這5萬元資金,才能使經銷該種商品獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com