【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。
A. 30°B. 45°C. 60°D. 90°
【答案】C
【解析】
由題意得,
,從而
,
,取
中點
,連結
,
,從而
平面
,延長
至點
,使
,連結
,
,
,則四邊形
為正方形,即有
,從而
(或其補角)即為異面直線
與
所成角,由此能求出異面直線
與
所成角的大。
由題意得BC=CD=a,∠BCD=90°,
∴BD=,∴∠BAD=90°,
取BD中點O,連結AO,CO,
∵AB=BC=CD=DA=a,
∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=,
又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,
∴AO⊥平面BCD,
延長CO至點E,使CO=OE,連結ED,EA,EB,
則四邊形BCDE為正方形,即有BC∥DE,
∴∠ADE(或其補角)即為異面直線AD與BC所成角,
由題意得AE=a,ED=a,
∴△AED為正三角形,∴∠ADE=60°,
∴異面直線AD與BC所成角的大小為60°.
故選:C.
科目:高中數學 來源: 題型:
【題目】某市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:萬元/平方米,
進行了一次調查統計,制成了如圖1所示的頻率分布直方圖,接著調查了該市2018年1月至2019年1月期間當月在售二手房均價
(單位:萬元平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應2018年1月至2019年1月).
(1)試估計該市市民的平均購房面積.
(2)現采用分層抽樣的方法從購房面積位于的40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在
的概率.
(3)根據散點圖選和
兩個模型進行擬合,經過數據處理得到兩個回歸方程,分別為
和
,并得到一些統計量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
請利用相關指數判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年6月份的二手房購房均價(精確到0.001)./span>
參考數據:,
,
,
,
,
,
,
,
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研團隊研發了一款快速檢測某種疾病的試劑盒.為了解該試劑盒檢測的準確性,質檢部門從某地區(人數眾多)隨機選取了位患者和
位非患者,用該試劑盒分別對他們進行檢測,結果如下:
(1)從該地區患者中隨機選取一人,對其檢測一次,估計此患者檢測結果為陽性的概率;
(2)從該地區患者中隨機選取人,各檢測一次,假設每位患者的檢測結果相互獨立,以
表示檢測結果為陽性的患者人數,利用(1)中所得概率,求
的分布列和數學期望;
(3)假設該地區有萬人,患病率為
.從該地區隨機選取一人,用該試劑盒對其檢測一次.若檢測結果為陽性,能否判斷此人患該疾病的概率超過
?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系
,點A為曲線
上的動點,點B在線段OA的延長線上,且滿足
,點B的軌跡為
.
(1)求,
的極坐標方程;
(2)設點C的極坐標為(2,0),求△ABC面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為
,則實數a的值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯表,并判斷是否有
的把握認為,了解阿基米德與選擇文理科有關?
比較了解 | 不太了解 | 合計 | |
理科生 | |||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數;
(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數,求
的分布列和數學期望.
參考數據:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線過橢圓
的右焦點,且交橢圓于A,B兩點,線段AB的中點是
,
(1)求橢圓的方程;
(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com