【題目】已知函數,定義函數
,給出下列命題:①
;②函數
是奇函數;③當
時,若
,
,總有
成立,其中所有正確命題的序號是( )
A.②B.①②C.③D.②③
科目:高中數學 來源: 題型:
【題目】某汽車公司最近研發了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續航里程的測試,F對測試數據進行分析,得到如圖所示的頻率分布直方圖:
(1)估計這100輛汽車的單次最大續航里程的平均值(同一組中的數據用該組區間的中點值代表).
(2)根據大量的汽車測試數據,可以認為這款汽車的單次最大續航里程近似地服從正態分布
,經計算第(1)問中樣本標準差
的近似值為50。用樣本平均數
作為
的近似值,用樣本標準差
作為
的估計值,現任取一輛汽車,求它的單次最大續航里程恰在250千米到400千米之間的概率.
參考數據:若隨機變量服從正態分布,則
,
,
.
(3)某汽車銷售公司為推廣此款新能源汽車,現面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優惠券3萬元。已知硬幣出現正、反面的概率都是0.5方格圖上標有第0格、第1格、第2格、…、第20格。遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次。若擲出正面,遙控車向前移動一格(從到
)若擲出反面遙控車向前移動兩格(從
到
),直到遙控車移到第19格勝利大本營)或第20格(失敗大本營)時,游戲結束。設遙控車移到第
格的概率為P試證明
是等比數列,并求參與游戲一次的顧客獲得優惠券金額的期望值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓M:的左頂點為
、中心為
,若橢圓M過點
,且
.
(1)求橢圓M的方程;
(2)若△APQ的頂點Q也在橢圓M上,試求△APQ面積的最大值;
(3)過點作兩條斜率分別為
的直線交橢圓M于
兩點,且
,求證:直線
恒過一個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數的定義域
恰是不等式
的解集,其值域為
,函數
的定義域為
,值域為
.
(1)求定義域
和值域
;
(2)試用單調性的定義法解決問題:若存在實數,使得函數
在
上單調遞減,
上單調遞增,求實數
的取值范圍并用
表示
;
(3)是否存在實數,使
成立?若存在,求實數
的取值范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com