【題目】5名運動員參加一次乒乓球比賽,每名運動員都賽
場并決出勝負.設第
位運動員共勝
場,負
場(
),則錯誤的結論是( )
A.
B.
C. 為定值,與各場比賽的結果無關
D. 為定值,與各場比賽結果無關
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①命題“若,則
”的否命題為“若
,則
”;
②“”是“
”的必要不充分條件;
③命題“,使得
”的否定是:“
,均有
”;
④命題“若,則
”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】霧霾大氣嚴重影響人們的生活,某科技公司擬投資開發新型節能環保產品,策劃部制定投資計劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現的虧損,經過市場調查,公司打算投資甲、乙兩個項目,根據預測,甲、乙項目可能的最大盈利率分別為和
,可能的最大虧損率分別為
和
,投資人計劃投資金額不超過9萬元,要求確?赡艿馁Y金虧損不超過
萬元.
Ⅰ
若投資人用x萬元投資甲項目,y萬元投資乙項目,試寫出x,y所滿足的條件,并在直角坐標系內作出表示x,y范圍的圖形.
Ⅱ
根據
的規劃,投資公司對甲、乙兩個項目分別投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數據模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學生進入30秒跳繩決賽
(B)5號學生進入30秒跳繩決賽
(C)8號學生進入30秒跳繩決賽
(D)9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題10分)選修4—4:坐標系與參數方程
已知曲線C1的參數方程為(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。
(Ⅰ)把C1的參數方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面
是平行四邊形,
,側面
底面
,
,
,
分別為
的中點,點
在線段
上.
(Ⅰ)求證:直線平面
;
(Ⅱ)若為
的中點,求平面
與平面
所成銳二面角的余弦值;
(Ⅲ)設,當
為何值時,直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的
倍,
為側棱
上的點.
(1)求證:;
(2)若平面
,求二面角
的大小;
(3)在(2)的條件下,側棱上是否存在一點
,使得
平面
.若存在,求
的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區組織居民學習了文明乘車規范.社區委員會針對居民的學習結果進行了相關的問卷調查,并將得到的分數整理成如圖所示的統計圖.
(1)求得分在上的頻率;
(2)求社區居民問卷調查的平均得分的估計值;(同一組中的數據以這組數據所在區間中點的值作代表)
(3)由于部分居民認為此項學習不具有必要性,社區委員會對社區居民的學習態度作調查,所得結果統計如下:(表中數據單位:人)
認為此項學習十分必要 | 認為此項學習不必要 | |
50歲以上 | 400 | 600 |
50歲及50歲以下 | 800 | 200 |
根據上述數據,計算是否有的把握認為居民的學習態度與年齡相關.
附:,其中
.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
為參數),以原點
為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,曲線
,
的公共點為
.
(Ⅰ)求直線的斜率;
(Ⅱ)若點分別為曲線
,
上的動點,當
取最大值時,求四邊形
的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com