精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=(ax2-2xa)·ex.
(1)當a=1時,求函數f(x)的單調區間;
(2)設g(x)=-a-2,h(x)=x2-2x-ln x,若x>1時總有g(x)<h(x),求實數a的取值范圍.

(1)單調遞增區間為(1,3),單調遞減區間為(-∞,1),(3,+∞).(2)-a

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,,函數的圖象在點處的切線平行于軸.
(1)確定的關系;
(2)試討論函數的單調性;
(3)證明:對任意,都有成立。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

f(x)=2x3ax2bx+1的導數為f′(x),若函數yf′(x)
的圖象關于直線x=-對稱,且f′(1)=0.
①求實數ab的值;②求函數f(x)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某汽車的緊急剎車裝置在遇到特別情況時,需在2 s內完成剎車,其位
移(單位:m)關于時間(單位:s)的函數為:s(t)=-3t3t2+20,求:
(1)開始剎車后1 s內的平均速度;
(2)剎車1 s到2 s之間的平均速度;
(3)剎車1 s時的瞬時速度.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(e為自然對數的底數)
(1)求函數的單調區間;
(2)設函數,存在實數,使得成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調遞增區間;
(2)若函數F(x)=f(x)-x2+3xa上只有一個零點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求證:時,恒成立;
(2)當時,求的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數,在(0,1)上是增函數,函數f(x)在R上有三個零點,且1是其中一個零點.
(1)求b的值      (2)求f(2)的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=axx2,g(x)=xln aa>1.
(1)求證:函數F(x)=f(x)-g(x)在(0,+∞)上單調遞增;
(2)若函數y-3有四個零點,求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视