【題目】某醫藥研究所開發一種新藥,據監測,如果成人按規定的劑量服用,服用藥后每毫升血液中的含藥量(微克)與服藥的時間
(小時)之間近似滿足如圖所示的曲線,其中
是線段,曲線
是函數
(
,
,且
,
是常數)的圖象.
(1)寫出服藥后關于
的函數關系式;
(2)據測定,每毫升血液中的含藥量不少于微克時治療疾病有效.假設某人第一次服藥為早上
,為保持療效,第二次服藥最遲應當在當天幾點鐘?
(3)若按(2)中的最遲時間服用第二次藥,則第二次服藥后小時,該病人每毫升血液中的含藥量為多少微克?(精確到
微克)
科目:高中數學 來源: 題型:
【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計劃在空地上修建一個矩形的活動場地OCDE及一矩形停車場EFGH,剩余的地方進行綠化.若
,設
(Ⅰ)記活動場地與停車場占地總面積為,求
的表達式;
(Ⅱ)當為何值時,可使活動場地與停車場占地總面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數f(x)的解析式;
(2)在區間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知真命題:“函數的圖象關于點
成中心對稱圖形”的等價條件為“函數
是奇函數”.
(1)將函數的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應的函數解析式,并利用題設中的真命題求函數
圖象對稱中心的坐標;
(2)已知命題:“函數的圖象關于某直線成軸對稱圖象”的等價條件為“存在實數a和b,使得函數
是偶函數”.斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設的真命題對它進行修改,使之成為真命題(不必證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,
,四邊形
為矩形,平面
平面
,
.
(1)求證:平面⊥平面
;
(2)點在線段
上運動,設平面
與平面
所成二面角的平面角為
,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com