精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在區間[tt+1]上的最大值h(t);(Ⅱ)是否存在實數m,使得yf(x)的圖象與yg(x)的圖象有且只有三個不同的交點?若存在,求出m的取值范圍;,若不存在,說明理由。
(Ⅰ) f(x)=2x(x-5)=2x2-10x(x∈R)  (Ⅱ)  見解析
(I)∵f(x)是二次函數,且f(x)<0的解集是(0,5),∴可設f(x)=ax(x-5)(a>0),
∴f(x)在區間[-1,4]上的最大值是f(-1)=6a,
由已知,得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).
(II)方程f(x)+=0等價于方程2x3-10x2+37=0,
設h(x)=2x3-10x2+37,則h¢(x)=6x2-20x=2x(3x-10),
當x∈(0,)時,h¢(x)<0,h(x)是減函數;當x∈(,+∞)時,h¢(x)>0,h(x)是增函數,
∵h(3)=1>0,h()=-<0,h(4)=5>0,∴方程h(x)=0在區間(3,)、(,4)內分別有惟一實數根,而在(0,3),(4,+∞)內沒有實數根,所以存在惟一的自然數m=3,使得方程f(x)+=0在區間(m,m+1)內有且只有兩個不同的實數根.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設a為正實數,函數f(x)=x3-ax2-a2x+1, x∈R.
(1)求f(x)的極值;
(2)設曲線y=f(x)與直線y=0至多有兩個公共點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

是定義在[-1,1]上的偶函數,的圖象與的圖象關于直線對稱,且當x∈[ 2,3 ] 時,
(1)求的解析式;
(2)若上為增函數,求的取值范圍;
(3)是否存在正整數,使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

的定義域為,的導函數為,且對任意正數均有,
(1)判斷函數上的單調性;
(2)設,比較的大小,并證明你的結論;
(3)設,若,比較的大小,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,則等于( )
A.B.C.0D.以上都不是

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,函數.
(1)當時,求函數f(x)的最小值;
(2)設函數h(x)=(1-x)f(x)+16,試根據m的取值分析函數h(x)的圖象與函數g(x)的圖象交點的個數.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)已知函數 .
(Ⅰ)試用含式子表示;(Ⅱ)求的單調區間;(Ⅲ)若,試求在區間上的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

f(x)=x(x+1)(x+2)…(x+n),則f′(0)=_________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知函數.   (1)求在函數圖像上點處的切線的方程;(2)若切線軸上的縱坐標截距記為,討論的單調增區間

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视