精英家教網 > 高中數學 > 題目詳情

【題目】已知A是雙曲線 =1(a>0,b>0)的左頂點,F1 , F2分別為左、右焦點,P為雙曲線上一點,G是△F1PF2的重心,若 ,| |= ,| |+| |=8,則雙曲線的標準方程為(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

【答案】A
【解析】解:由題意,G是△F1PF2的重心,若 ,

可得PG=2GO,GA∥PF1,

∴2OA=AF1

∴2a=c﹣a,∴c=3a,

∴b= =2 a,

| |= ,| |+| |=8,

可得| |=3× =5,

| |=8﹣5=3,

可得2a=|PF1﹣PF2|=|5﹣3|=2,

解得a=1,b=2

則雙曲線的方程為x2 =1.

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設橢圓C: =1(a>b>0)的焦點F1 , F2 , 過右焦點F2的直線l與C相交于P、Q兩點,若△PQF1的周長為短軸長的2 倍.
(Ⅰ)求C的離心率;
(Ⅱ)設l的斜率為1,在C上是否存在一點M,使得 ?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從高三年級隨機抽取100名學生,將他們的某次考試數學成績繪制成頻率分布直方圖.由圖中數據可知成績在[130,140)內的學生人數為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,以點(0,1)為圓心且與直線mx﹣y﹣2m﹣1=0(x∈R)相切的所有圓中,半徑最大的圓的標準方程為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為 (θ為參數).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為
(1)求曲線C的普通方程及直線l的直角坐標方程;
(2)設P是曲線C上的任意一點,求點P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(Ⅰ)求證:面ADE⊥面 BDE;
(Ⅱ)求直線AD與平面DCE所成角的正弦值..

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面內,定點A,B,C,O滿足 |=2, = ,動點P,M滿足 的最大值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為4π,且對x∈R,有f(x)≤f( )成立,則關于函數f(x)的下列說法中正確的是( )
①φ=
②函數f(x)在區間[﹣π,π]上遞減;
③把g(x)=sin 的圖象向左平移 得到f(x)的圖象;
④函數f(x+ )是偶函數.
A.①③
B.①②
C.②③④
D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓C: =1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2 , 過點A且斜率為 的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P且斜率大于 的直線與橢圓交于M,N兩點(|PM|>|PN|),若SPAM:SPBN=λ,求實數λ的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视