【題目】已知直線l:y=x+m,m∈R.
(I)若以點M(2,0)為圓心的圓與直線l相切與點P,且點P在y軸上,求該圓的方程;
(II)若直線l關于x軸對稱的直線為,問直線
與拋物線C:x2=4y是否相切?說明理由.
科目:高中數學 來源: 題型:
【題目】2020年4月8日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態下,武漢市有序復工復產復市,但是仍然不能麻痹大意,仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區管理工作,結合復工復產復市的實際需要,某小區物業提供了,
兩種小區管理方案,為了了解哪一種方案最為合理有效,物業隨機調查了50名男業主和50名女業主,每位業主對
,
兩種小區管理方案進行了投票(只能投給一種方案),得到下面的列聯表:
|
| |
男業主 | 35 | 15 |
女業主 | 25 | 25 |
(1)分別估計,
方案獲得業主投票的概率;
(2)判斷能否有95%的把握認為投票選取管理方案與性別有關.
附:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的各項均為正數,其前n項的積為
,記
,
.
(1)若數列為等比數列,數列
為等差數列,求數列
的公比.
(2)若,
,且
①求數列的通項公式.
②記,那么數列
中是否存在兩項
,(s,t均為正偶數,且
),使得數列
,
,
,成等差數列?若存在,求s,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為軸,其準線為
.
(1)求拋物線C的方程;
(2)設直線,對任意的
拋物線C上都存在四個點到直線l的距離為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當最小時,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,底面
是直角梯形,其中
,
,
,
,
為棱
上的點,且
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設為棱
上的點(不與
,
重合),且直線
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com