精英家教網 > 高中數學 > 題目詳情

【題目】紅鈴蟲是棉花的主要害蟲之一,能對農作物造成嚴重傷害,每只紅鈴蟲的平均產卵數y和平均溫度x有關,現收集了以往某地的7組數據,得到下面的散點圖及一些統計量的值.(表中

平均溫度

21

23

25

27

29

32

35

平均產卵數/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根據散點圖判斷,(其中自然對數的底數)哪一個更適宜作為平均產卵數y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數據,求出yx的回歸方程.(計算結果精確到小數點后第三位)

2)根據以往統計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達到28℃以上的概率為.

①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應的概率p.

②當取最大值時,記該地今后5年中,需要人工防治的次數為X,求X的數學期望和方差.

附:線性回歸方程系數公式.

【答案】1更適宜,;(2)①;②,

【解析】

1)根據散點圖選擇合適函數模擬,利用變量,構造線性回歸方程,利用已知量求解出關于的線性回歸方程,即可求解出y關于x的回歸方程;

2)①先表示出,然后根據分析出的最大值以及的值;

②根據的值以及二項分布的均值與方差的計算方法求解出結果即可.

解:(1)根據散點圖可以判斷,更適宜作為平均產卵數

y關于平均溫度x的回歸方程類型;

兩邊取自然對數,得;

,得

因為,

所以z關于x的回歸方程為;

所以y關于x的回歸方程為

2)(i)由,

,

因為,令,得,解得;

所以上單調遞增,在上單調遞減,

所以有唯一的極大值為,也是最大值;

所以當時,;

ii)由(i)知,當取最大值時,,所以

所以X的數學期望為

方差為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列對這類高階等差數列的研究,在楊輝之后一般稱為垛積術”.現有高階等差數列,其前7項分別為14,8,14,2336,54,則該數列的第19項為( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=|2x-1|+|x+m|

l)當m=l時,解不等式fx)≥3;

2)證明:對任意xR,2fx)≥|m+1|-|m|

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知非常數列滿足,若,則( )

A.存在,,對任意,,都有為等比數列

B.存在,,對任意,,都有為等差數列

C.存在,,對任意,,都有為等差數列

D.存在,,對任意,都有為等比數列

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正四棱柱中,底面邊長為,側棱長為4,、分別為棱、的中點,;

1)求直線與平面所成角的大。

2)求點到平面的距離;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數據模糊.

學生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則

A2號學生進入30秒跳繩決賽

B5號學生進入30秒跳繩決賽

C8號學生進入30秒跳繩決賽

D9號學生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數方程為為參數),以為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

Ⅰ)求曲線的普通方程與曲線的直角坐標方程;

Ⅱ)設為曲線上的動點,求點上點的距離的最小值,并求此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數.

1)討論函數的單調性;

2)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视