【題目】已知函數
(Ⅰ)若,求證:函數
在(1,+∞)上是增函數;
(Ⅱ)求函數在[1,e]上的最小值及相應的
值.
【答案】(Ⅰ)函數f(x)在(1,+∞)上是增函數;(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)代入,求導,通過導數恒為正值進行證明;(Ⅱ)求導,通過討論參數的取值,研究函數的極值點與所給區間的關系,進而研究函數在所給區間上的單調性和極值、最值進行求解.
試題解析:(Ⅰ)當a=﹣2時,f(x)=x2﹣2lnx,當x∈(1,+∞),,故函數f(x)在(1,+∞)上是增函數.
(Ⅱ),當x∈[1,e],2x2+a∈[a+2,a+2e2].
若a≥﹣2,f'(x)在[1,e]上非負(僅當a=﹣2,x=1時,f'(x)=0),
故函數f(x)在[1,e]上是增函數,此時[f(x)]min=f(1)=1.
若﹣2e2<a<﹣2,當時,f'(x)=0;當
時,f'(x)<0,
此時f(x)是減函數;當時,f'(x)>0,此時f(x)是增函數.
故[f(x)]min==
若a≤﹣2e2,f'(x)在[1,e]上非正(僅當a=﹣2e2,x=e時,f'(x)=0),
故函數f(x)在[1,e]上是減函數,此時[f(x)]min=f(e)=a+e2.
綜上可知,當a≥﹣2時,f(x)的最小值為1,相應的x值為1;
當﹣2e2<a<﹣2時,f(x)的最小值為,相應的x值為
;
當a≤﹣2e2時,f(x)的最小值為a+e2,相應的x值為e
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系 中,過橢圓
右焦點
的直線
交橢圓
于
兩點 ,
為
的中點,且
的斜率為
.
(1)求橢圓的標準方程;
(2)設過點 的直線
(不與坐標軸垂直)與橢圓
交于
兩點,問:在
軸上是否存在定點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學,傳誦經典”考試,并從中隨機抽取了100名考生的成績(得分均為整數,滿足100分)進行統計制表,其中成績不低于80分的考生被評為優秀生,請根據頻率分布表中所提供的數據,用頻率估計概率,回答下列問題.
分組 | 頻數 | 頻率 |
5 | 0.05 | |
0.20 | ||
35 | ||
25 | 0.25 | |
15 | 0.15 | |
合計 | 100 | 1.00 |
(1)求的值并估計這100名考生成績的平均分;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學校的“我愛國學”宣傳活動,求其中優秀生的人數;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的前n項和為Sn,且=9,S6=60.
(I)求數列{an}的通項公式;
(II)若數列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數列
的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一位同學家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學需要早上7 : 008 : 00之間出發上學,則這位同學在離開家之前能拿到報紙的概率為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com