精英家教網 > 高中數學 > 題目詳情

【題目】某養殖場需要通過某裝置對養殖車間進行恒溫控制,為了解日用電量與日平均氣溫(℃)之間的關系,隨機統計了某5天的用電量與當天平均氣溫,并制作了對照表:

日平均氣溫(℃)

3

4

5

6

7

日用電量(

2.5

3

4

4.5

6

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)請利用(Ⅰ)中的線性回歸方程預測日平均氣溫為12℃時的日用電量.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為.

【答案】(Ⅰ)(Ⅱ)

【解析】

)由表中數據計算得,所以代入公式可得,可得關于的線性回歸方程;

)將代入()中得到的回歸方程即可得日平均氣溫為12℃時日用電量.

)由表中數據計算得

,

所以.

所以關于的線性回歸方程為.

)將代入()中得到的回歸方程得

故預測日平均氣溫為12℃時,日用電量為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數圖像過點,在處的切線方程是

1)求的解析式;

2)求函數的圖像過點的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地有種特產水果很受當地老百姓歡迎,但該種水果只能在9月份銷售,且該種水果只能當天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產水果,每天計劃進貨量相同,進貨成本每公斤8元,銷售價每公斤12元;當天未賣出的水果則轉賣給水果罐頭廠,但每公斤只能賣到5元。根據往年銷售經驗,每天需求量與當地氣溫范圍有一定關系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購計劃,統計了前三年9月份的氣溫范圍數據,得下面的頻數分布表

氣溫范圍

天數

4

14

36

21

15

以氣溫范圍位于各區間的頻率代替氣溫范圍位于該區間的概率.

1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數學期望;

2)設9月份一天銷售特產水果的利潤為(單位:元),當9月份這種水果一天的進貨量為(單位:公斤)為多少時,的數學期望達到最大值,最大值為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著我國居民生活水平的不斷提高,汽車逐步進入百姓家庭,但隨之面來的交通擁堵和交通事故時有發生,給人民的生活也帶來了諸多不便.某市為了確保交通安全.決定對交通秩序做進步整頓,對在通路上行駛的前后相鄰兩機動車之間的距離d(米)與機動車行駛速度v(千米/小時)做出如下兩條規定:

av2;

.(其中a是常量,表示車身長度,單位:米)

1)當時.求機動車的最大行駛速度;

2)設機動車每小時流量Q,問當機動車行駛速度v≥30(千米/小時)時,機動車以什么樣的狀態行駛,能使機動車每小時流量Q最大?并說明理由.(機動車每小時流量Q是指每小時通過觀測點的車輛數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,角A,BC對應的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設某大學的女生體重(單位:)與身高(單位:)具有線性相關關系。根據組樣本數據,用最小二乘法建立的回歸方程為,則下列結論中不正確的是( )

A.具有正的線性相關關系

B.回歸直線過樣本點的中心

C.若該大學某女生身高增加,則其體重約增加

D.若該大學某女生身高為,則可斷定其體重必為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某居民區有一個銀行網點(以下簡稱“網點”),網點開設了若干個服務窗口,每個窗口可以辦理的業務都相同,每工作日開始辦理業務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網點等待辦理業務的概率都相等,且每位儲戶是否在該時段到網點相互獨立.根據歷史數據,統計了各工作日在等待時段到網點等待辦理業務的儲戶人數,得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網點等待辦理業務的儲戶人數的平均值;

(2)假設網點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網點等待辦理業務的概率;

②儲戶都是按照進入網點的先后順序,在等候人數最少的服務窗口排隊辦理業務.記“每工作日上午8點30分時網點每個服務窗口的排隊人數(包括正在辦理業務的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網點至少需開設多少個服務窗口?

參考數據:;

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓,)的右焦點,且橢圓過點.

1)求橢圓的方程;

2)設動直線與橢圓交于,兩點,,,且的面積.

①求證:為定值;

②設直線的中點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视