【題目】已知橢圓的左、右焦點分別為
,過點
且斜率為
的直線和以橢圓的右頂點為圓心,短半軸為半徑的圓相切.
(1)求橢圓的方程;
(2)橢圓的左、右頂點分為A,B,過右焦點的直線l交橢圓于P,Q兩點,求四邊形APBQ面積的最大值.
【答案】(1),(2)6
【解析】
(1)依題意可得,即可求出過點
且斜率為
的直線的方程,設以右頂點
為圓心,b為半徑的圓的方程為
,根據直線與圓相切,即圓心到直線的距離等于半徑得到方程組,解得.
(2)設直線l的方程為,
,聯立直線與橢圓方程,消去
,列出韋達定理,四邊形APBQ的面積
,又
,得到
,設
,則
即可求出函數的最大值.
解:(1)設橢圓的焦距為,故由題可知
,則橢圓的左焦點
,
故直線方程為,
以右頂點為圓心,b為半徑的圓的方程為
,
則,
,
解得或
(舍去),故
,
橢圓的方程為
.
(2)設直線l的方程為,
,
聯立,整理得
,顯然
,
則,
,
故四邊形APBQ的面積.
設,則
,
可設函數,則
,
函數
在
上單調遞增,
則,則
,
當且僅當時等號成立,四邊形APBQ的面積取得最大值為6.
科目:高中數學 來源: 題型:
【題目】定義:直線關于圓的圓心距單位圓心到直線的距離與圓的半徑之比.
(1)設圓,求過點
的直線關于圓
的圓心距單位
的直線方程.
(2)若圓與
軸相切于點
,且直線
關于圓
的圓心距單位
,求此圓
的方程.
(3)是否存在點,使過點
的任意兩條互相垂直的直線分別關于相應兩圓
與
的圓心距單位始終相等?若存在,求出相應的
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“劍橋學派”創始人之一數學家哈代說過:“數學家的造型,同畫家和詩人一樣,也應當是美麗的”;古希臘數學家畢達哥拉斯創造的“黃金分割”給我們的生活處處帶來美;我國古代數學家趙爽創造了優美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則
等于( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為:,經過點
,傾斜角為
的直線l與曲線C交于A,B兩點
(I)求曲線C的直角坐標方程和直線l的參數方程;
(Ⅱ)求的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列的前n項和為
,且當
時,
是
與2m的等差中項
為實數
.
(1)求m的值及數列的通項公式;
(2)令,是否存在正整數k,使得
對任意正整數n均成立?若存在,求出k的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}、{bn}滿足:a1=,an+bn=1,bn+1=
.
(1)求a2,a3;
(2)證數列為等差數列,并求數列{an}和{bn}的通項公式;
(3)設Sn=a1a2+a2a3+a3a4+…+anan+1,求實數λ為何值時4λSn<bn恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點
的極坐標為
,直線
的極坐標方程為
,且
過點
,曲線
的參數方程為
(
為參數).
(Ⅰ)求曲線上的點到直線
的距離的最大值;
(Ⅱ)過點與直線
平行的直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x),g(x)滿足關系g(x)=f(x)f(x+α),其中α是常數.
(1)設f(x)=cosx+sinx,,求g(x)的解析式;
(2)設計一個函數f(x)及一個α的值,使得;
(3)當f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com