精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

已知直線(其中為參數, 為傾斜角).以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的直角坐標方程,并求的焦點的直角坐標;

(2)已知點,若直線相交于兩點,且,求的面積.

【答案】(1)的直角坐標方程為,其焦點為.(2)

【解析】試題分析:1根據代入原方程,寫出直角坐標方程以及焦點坐標即可; 2將直線l的參數方程代入曲線C中,寫出韋達定理,再根據t的幾何意義將等價轉化,代入韋達定理解出直線的傾斜角的值,進而求出三角形的面積.

試題解析:解:(1)原方程變形為,

的直角坐標方程為,其焦點為.

(2)把的方程代入,

,

,

平方得,

把①代入②得,

是直線的傾斜角,∴,

的普通方程為,且

的面積為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )

(參考數據:

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,且曲線處的切線與平行.

(1)求的值;

(2)當時,試探究函數的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(1)求的方程;

(2)是否存在直線相交于兩點,且滿足:①為坐標原點)的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經過圓心C時,求直線l的方程; (寫一般式)
(2)當直線l的傾斜角為45°時,求弦AB的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組中的兩個函數是同一函數的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數函數f(x)=(
(1)求函數f(x)的值域
(2)求函數的單調遞減區間.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视