【題目】已知定義域為的函數
是奇函數.
(1)求的值;
(2)判斷函數的單調性,并用定義證明;
(3)當時,
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】為了美化城市環境,某市針對市民亂扔垃圾現象進行罰款處理。為了更好的了解市民的態度,隨機抽取了200人進行了調查,得到如下數據:
罰款金額 | 0 | 5 | 10 | 15 | 20 |
會繼續亂扔垃圾的人數 | 80 | 50 | 40 | 20 | 10 |
(1)若亂扔垃圾的人數與罰款金額
滿足線性回歸方程,求回歸方程
,其中
,并據此分析,要使亂扔垃圾者不超過
,罰款金額至少是多少元?
(2)若以調查數據為基礎,從5種罰款金額中隨機抽取2種不同的數額,求這兩種金額之和不低于25元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓心坐標為(,1)的圓M與x軸及直線y=
x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y=
x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金
萬元的關系分別為
(其中
都為常數),函數
對應的曲線
如圖所示.
(1)求函數的解析式;
(2)若該商場一共投資8萬元經銷甲、乙兩種商品,求該商場所獲利潤的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點為圓心的圓過原點
.
(1)設直線與圓
交于點
,若
,求圓
的方程;
(2)在(1)的條件下,設,且
分別是直線
和圓
上的動點,求
的最大值及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的新產品必須先靠廣告打開銷路,該產品廣告效應(單位:元)是產品的銷售額與廣告費
(單位:元)之間的差,如果銷售額與廣告費
的算術平方根成正比,根據對市場的抽樣調查,每付出100元的廣告費,所得銷售額是1000元.
(Ⅰ)求出廣告效應與廣告費
之間的函數關系式;
(Ⅱ)該企業投入多少廣告費才能獲得最大的廣告效應?是不是廣告費投入越多越好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班主任對全班50名學生作了一次調查,所得數據如表:
認為作業多 | 認為作業不多 | 總計 | |
喜歡玩電腦游戲 | 18 | 9 | 27 |
不喜歡玩電腦游戲 | 8 | 15 | 23 |
總計 | 26 | 24 | 50 |
由表中數據計算得到K2的觀測值k≈5.059,于是________(填“能”或“不能”)在犯錯誤的概率不超過0.01的前提下認為喜歡玩電腦游戲與認為作業多有關.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com