【題目】2019年10月,德國爆發出“芳香烴門”事件,即一家權威的檢測機構在德國銷售的奶粉中隨機抽檢了16款(德國4款,法國8款、荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴重危害嬰幼兒的成長,有些奶粉已經遠銷至中國,地區聞訊后,立即組織相關檢測員對這8款品牌的奶粉進行抽檢,已知該地區一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機抽取3袋恰有2袋含有芳香經礦物油成分的概率為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為
,
,點
在橢圓
上.
(1)求橢圓的標準方程;
(2)是否存在斜率為的直線
與橢圓
相交于
,
兩點,使得
?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位40歲以上的女性職工共有60人,為了調查一下體重和年齡的關系,將這60人隨機按1~60編號,用系統抽樣的方法從中抽取10人,測量一下體重.
(1)若被抽出的號碼其中一個為7,則最后被抽出的號碼是多少?
(2)被抽取的10個人的體重(單位:),用莖葉圖表示如圖,求這10人體重的中位數與平均數;
(3)從這10個人中體重超過的人中隨機抽取2人,參加健康指導培訓,求體重為
的人被抽到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列的前
項和為
,已知
,
.
(1)求;
(2)若從中抽取一個公比為
的等比數列
,其中
,且
,
(i)求的通項公式;
(ii)記數列的前項和為
,是否存在正整數
,使得
成等差數列?若存在,求出
滿足的條件;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數).在極坐標系(與平面直角坐標系
取相同的長度單位,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程及直線
的直角坐標方程;
(2)設是曲線
上的任意一點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正方體有8個不同頂點,現任意選擇其中4個不同頂點,然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結論的編號)
①每個面都是直角三角形的四面體;
②每個面都是等邊三角形的四面體;
③每個面都是全等的直角三角形的四面體;
④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際羽毛球比賽規則從2006年5月開始,正式決定實行21分的比賽規則和每球得分制,并且每次得分者發球,所有單項的每局獲勝分至少是21分,最高不超過30分,即先到21分的獲勝一方贏得該局比賽,如果雙方比分為時,獲勝的一方需超過對方2分才算取勝,直至雙方比分打成
時,那么先到第30分的一方獲勝.在一局比賽中,甲發球贏球的概率為
,甲接發球贏球的概率為
,則在比分為
,且甲發球的情況下,甲以
贏下比賽的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com