【題目】如圖,在正方體中,E,F,M,N分別是
,BC,
,
的中點.
(1)求證:平面平面NEF;
(2)求二面角的平面角的正切值.
科目:高中數學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量(單位:克)分別在,
,
,
,
,
中,經統計得頻率分布直方圖如圖所示.
(1)現按分層抽樣從質量為,
的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在
內的概率;
(2)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
方案:所有芒果以10元/千克收購;
方案:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列的首項
,前n項和
滿足
.
(1)求數列的通項公式;
(2)若數列是公比為4的等比數列,且
,
,
也是等比數列,若數列
單調遞增,求實數
的取值范圍;
(3)若數列、
都是等比數列,且滿足
,試證明: 數列
中只存在三項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國是世界互聯網服務應用最好的國家,一部智能手機就可以跑遍國內所有地方,中國市場的移動支付普及率高得驚人.一家大型超市委托某高中數學興趣小組調查該超市的顧客使用移動支付的情況,調查人員從年齡在內的顧客中,隨機抽取了
人,調查他們是否使用移動支付,結果如下表:
年齡 | ||||||||
使用 | ||||||||
不使用 |
(1)為更進一步推動移動支付,超市準備對使用移動支付的每位顧客贈送個環保購物袋,若某日該超市預計有
人購物,試根據上述數據估計,該超市當天應準備多少個環保購物袋?
(2)填寫下面列聯表,并根據列聯表判斷是否有的把握認為使用移動支付與年齡有關?
年齡 | 年齡 | 小計 | |
使用移動支付 | |||
不使用移動支付 | |||
合計 |
附:下面的臨界值表供參考:
參考數據:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分別為棱AB,PC上的點.
(1)求證:平面AFD⊥平面PAB;
(2)若點E滿足,當F滿足什么條件時,EF∥平面PAD?請給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為,(為參數),曲線C的參數方程為
(α為參數).
(Ⅰ)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(3,),判斷點P與直線l位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com