精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在△ABC中,點M是BC的中點,點N在AC上,且AN=3NC,AM與BN相交于點P,設 = = ,用 表示

【答案】解:設 = λ( + )= + )= + , ∵B,P,N三點共線,
+ =1,
∴λ=
= + = + = + +
= + )+ = + = +
【解析】設 ,根據B,P,N三點共線,求出λ= ,再根據根據向量加法的幾何意義,向量的數乘運算,即可求出
【考點精析】本題主要考查了平面向量的基本定理及其意義的相關知識點,需要掌握如果、是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且只有一對實數、,使才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】“糖尿病”已經成為日漸多發的一種疾病,其具有危害性大且難以完全治愈的特征.為了更好的抑制“糖尿病”多發的勢頭,某社區衛生醫療機構針對所服務居民開展了免費測血糖活動,將隨機抽取的10名居民均分為, 兩組(組:4.3,5.1,4.6,4.1,4.9; 組:5.1,4.9,4.0,4.0,4.5).

(1)通過提供的數據請判斷哪一組居民的血糖值更低;

(2)現從組的5名居民中隨機選取2名,求這2名中至少有1名的血糖值低于4.5的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校組織自主招生考試,其有2 000名學生報名參加了筆試,成績均介于195分到275分之間,從中隨機抽取50名同學的成績進行統計,將統計結果按如下方式分成八組:第一組[195,205),第二組[205,215),…,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.

(1)從這2 000名學生中,任取1人,求這個人的分數在255~265之間的概率約是多少?
(2)求這2 000名學生的平均分數;
(3)若計劃按成績取1 000名學生進入面試環節,試估計應將分數線定為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一只口袋內裝有大小相同的5只球,其中3只白球2只黑球,從中一次摸出兩只球.
(1)共有多少個基本事件,并列出.
(2)摸出的兩只球都是白球的概率.
(3)摸出的兩只球是一黑一白的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列有關命題的敘述,錯誤的個數為(
①若p∨q為真命題,則p∧q為真命題
②“x>5”是“x2﹣4x﹣5>0”的充分不必要條件
③命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,使得x2+x﹣1≥0
④命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =3 1﹣2 2 , =4 1+ 2 , 其中 1=(1,0), 2=(0,1),求:
(1) 和| + |的值;
(2) 夾角θ的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A、B、C為△ABC的三個內角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,已知AB= ,cosB= ,AC邊上的中線BD= ,求sinA的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2﹣8y+12=0,直線l經過點D(﹣2,0),且斜率為k.
(1)求以線段CD為直徑的圓E的方程;
(2)若直線l與圓C相離,求k的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视