【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數據中分別隨機抽取100個,并按[ 0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:
假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.
(1)寫出頻率分布直方圖(甲)中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為
,
,試比較
與
的大小;(只需寫出結論)
(2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率;
(3)設表示在未來3天內甲種酸奶的日銷售量不高于20箱的天數,以日銷售量落入各組的頻率作為概率,求
的數學期望.
【答案】(1),
;(2)0.42;(3)0.9.
【解析】
試題(Ⅰ)由各個小矩形的面積和為1,先求出,由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,由此可得出
與
的大小關系;(Ⅱ)首先設事件
:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件
:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件
:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個高于20箱且另一個不高于20箱;然后分別求出事件
和事件
的概率,最后由相互獨立事件的概率乘法計算公式即可得出所求的結果;(Ⅲ)首先由題意可知
的可能取值為0,1,2,3,然后運用相互獨立重復試驗的概率計算公式分別計算相應的概率,最后得出其分布列即可.
試題解析:(Ⅰ)由各小矩形的面積和為1可得:,解之的
;由頻率分布直方圖可看出,甲的銷售量比較分散,而乙較為集中,主要集中在
箱,故
.
(Ⅱ)設事件:在未來的某一天里,甲種酸奶的銷售量不高于20箱;事件
:在未來的某一天里,乙種酸奶的銷售量不高于20箱;事件
:在未來的某一天里,甲、乙兩種酸奶的銷售量恰好一個高于20箱且另一個不高于20箱.則
,
.所以
.
(Ⅲ)由題意可知,的可能取值為0,1,2,3.
,
,
,
.
所以的分布列為
0 | 1 | 2 | 3 | |
0.343 | 0.441 | 0.189 | 0.027 |
所以的數學期望
.
科目:高中數學 來源: 題型:
【題目】已知曲線的方程為
,集合
,若對于任意的
,都存在
,使得
成立,則稱曲線
為
曲線,下列方程所表示的曲線中,是
曲線的有______(寫出所有
曲線的序號)
①;②
;③
;④
;⑤
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小學舉辦“父母養育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學生給父母洗腳的百分比y%進行了調查統計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)建立y關于x的回歸方程,并據此預計該校學生升入中學的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數據:
參考公式:相關系數,若r>0.95,則y與x的線性相關程度相當高,可用線性回歸模型擬合y與x的關系.回歸方程
中斜率與截距的最小二乘估計公式分別為
=
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,函數在第一象限內的圖像如圖所示,試做如下操作:把x軸上的區間
等分成n個小區間,在每一個小區間上作一個小矩形,使矩形的右端點落在函數
的圖像上.若用
表示第k個矩形的面積,
表示這n個叫矩形的面積總和.
(1)求的表達式;
(2)利用數學歸納法證明,并求出
的表達式
(3)求的值,并說明
的幾何意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以原點
為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,
為曲線
上的動點,
與
軸、
軸的正半軸分別交于
,
兩點.
(1)求線段中點
的軌跡的參數方程;
(2)若是(1)中點
的軌跡上的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,其中
,點
是橢圓
的右頂點,射線
:
與橢圓
的交點為
.
(1)求點的坐標;
(2)設橢圓的長半軸、短半軸的長分別為
、
,當
的值在區間
中變化時,求
的取值范圍;
(3)在(2)的條件下,以為焦點,
為頂點且開口方向向左的拋物線過點
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司航拍宣傳畫報,為了凸顯公司文化,選擇如圖所示的邊長為2百米的正三角形空地進行布置拍攝場景,在
的中點
處安裝中央聚光燈,
為邊
上得可以自由滑動的動點,其中
設置為普通色彩燈帶(燈帶長度可以自由伸縮),線段
部分需要材料
(單位:百米)裝飾用以增加拍攝效果因材料
價格昂貴,所以公司要求采購
材料使用不造成浪費.
(1)當,
與
垂直時,采購部需要采購多少百米材料
?
(2)為了增加拍攝動態效果需要,現要求點在
邊上滑動,且
,則購買材料
的范圍是多少才能滿足動態效果需要又不會造成浪費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場營銷人員進行某商品的市場營銷調查時發現,每回饋消費者一定的點數,該商品每天的銷量就會發生一定的變化,經過試點統計得到以下表:
反饋點數t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經分析發現,可用線性回歸模型擬合當地該商品銷量
(千件)與返還點數
之間的相關關系.試預測若返回6個點時該商品每天的銷量;
(Ⅱ)若節日期間營銷部對商品進行新一輪調整.已知某地擬購買該商品的消費群體十分龐大,經營銷調研機構對其中的200名消費者的返點數額的心理預期值進行了一個抽樣調查,得到如下一份頻數表:
返還點數預期值區間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數 | 20 | 60 | 60 | 30 | 20 | 10 |
將對返點點數的心理預期值在和
的消費者分別定義為“欲望緊縮型”消費者和“欲望膨脹型”消費者,現采用分層抽樣的方法從位于這兩個區間的30名消費者中隨機抽取6名,再從這6人中隨機抽取3名進行跟蹤調查,求抽出的3人中至少有1名“欲望膨脹型”消費者的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com