精英家教網 > 高中數學 > 題目詳情

【題目】研究變量得到一組樣本數據,進行回歸分析,有以下結論

①殘差平方和越小的模型,擬合的效果越好;

②用相關指數來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對應的直線至少經過其樣本數據點中的一個點;

④若變量之間的相關系數為,則變量之間的負相關很強.

以上正確說法的個數是( )

A. B. C. D.

【答案】B

【解析】

由題意,對各個命題逐一判斷,可得真假。

①殘差平方和越小的模型,模擬效果越好,故①對;

②用相關指數來刻畫回歸效果,越大說明模擬效果越好,故②錯

③回歸直線必過樣本中心,但數據點不一定在線上,故③錯

④相關系數為正值,則兩變量正相關,相關系數為負值,則兩變量負相關,且相關系數絕對值越接近1,相關性越強,,則負相關很強,故④對,故選B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】是定義域為的函數的導函數,,則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的焦點為(,0),(0),且橢圓C過點M(4,1),直線l不過點M,且與橢圓交于不同的兩點A,B.

(1)求橢圓C的標準方程;

(2)求證:直線MA,MB與x軸總圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.

(1)求橢圓的標準方程;

(2)是否存在實數使以線段為直徑的圓經過點,若存在,求出實數的值;若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為自然對數的底數,

)判斷函數的單調性,并說明理由;

)若,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

x表示1臺機器在三年使用期內需更換的易損零件數,y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數.

=19,yx的函數解析式;

若要求需更換的易損零件數不大于的頻率不小于0.5,的最小值;

假設這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若對任意的,總存在,使得,則實數的取值范圍是( )

A. B. C. D. 以上都不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在城市舊城改造中,某小區為了升級居住環境,擬在小區的閑置地中規劃一個面積為的矩形區域(如圖所示),按規劃要求:在矩形內的四周安排寬的綠化,綠化造價為200元/,中間區域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.

(1)設總造價(元)表示為長度的函數;

(2)當取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一某班50名學生參加防疫知識競賽,將所有成績制作成頻率分布表如下:

分組

頻數

頻率

0.06

35

0.070

6

0.12

4

1)求頻率分布表中的值;

2)從成績在的學生中選出2人,請寫出所有不同的選法,并求選出2人的成績都在中的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视