精英家教網 > 高中數學 > 題目詳情

【題目】三棱錐P﹣ABC的四個頂點都在球O的球面上,已知PA,PB,PC兩兩垂直,PA=1,PB+PC=4,當三棱錐的體積最大時,球心O到平面ABC的距離是(
A.
B.
C.
D.

【答案】B
【解析】解:由題意,V= = , 當且僅當PB=PC=2時,三棱錐的體積最大,
如圖所示,將P﹣ABC視為正四棱柱的一部分,

則CD=2R,即PA2+PB2+PC2=4R2=9,可得R= ,
因為AB=AC= ,BC=2
所以cos∠ACB= = ,sin∠ACB=
△ABC外接圓的半徑為r= ,
設球心到平面ABC的距離為d,
所以d= =
故選B.
【考點精析】通過靈活運用球內接多面體,掌握球的內接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系xOy中,曲線C1的參數方程為 (α為參數),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖程序框圖的算法思路源于歐幾里得名著《幾何原本》中的“輾轉相除法”,執行該程序框圖,若輸入m,n分別為225、135,則輸出的m=(
A.5
B.9
C.45
D.90

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當m=3時,求函數f(x)的最大值;
(2)解關于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: 的右焦點F( ),過點F作平行于y軸的直線截橢圓C所得的弦長為 . (Ⅰ)求橢圓的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于P,Q兩點,N點在直線x=﹣1上,若△NPQ是等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點,M是棱PC的中點,PA=PD=PC,BC= AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P﹣AD﹣C為60°,求直線PB與平面QMB所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,把位于直線y=k與直線y=l(k、l均為常數,且k<l)之間的點所組成區域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區域”,設f(x)為二次函數,三點(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區域”,如果點(t,t+1)位于“﹣1⊕3型帶狀區域”,那么,函數y=|f(t)|的最大值為(
A.
B.3
C.
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sinx+λcosx的圖像的一個對稱中心是點( ,0),則函數g(x)=λsinxcosx+sin2x的圖像的一條對稱軸是直線(
A.x=
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生寒假期間學習情況,學校對某班男、女學生學習時間進行調查,學習時間按整小時統計,調查結果繪成折線圖如下:
(Ⅰ)已知該校有400名學生,試估計全校學生中,每天學習不足4小時的人數;
(Ⅱ)若從學習時間不少于4小時的學生中選取4人,設選到的男生人數為X,求隨機變量X的分布列;
(Ⅲ)試比較男生學習時間的方差 與女生學習時間方差 的大。ㄖ恍鑼懗鼋Y論)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视