【題目】在平面直角坐標系中,曲線C的參數方程為(θ為參數),直線l的參數方程為
(m為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸,建立坐標系.
(1)求曲線C的極坐標方程;
(2)直線l與曲線C相交于M,N兩點,若,求
的值.
科目:高中數學 來源: 題型:
【題目】動點在橢圓
上,過點
作
軸的垂線,垂足為
,點
滿足
,已知點
的軌跡是過點
的圓.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
,
兩點(
,
在
軸的同側),
,
為橢圓的左、右焦點,若
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,斜率為的直線交拋物線
于
兩點,已知點
的橫坐標比點
的橫坐標大4,直線
交線段
于點
,交拋物線于點
.
(1)若點的橫坐標等于0,求
的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸建極坐標系,直線
的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為
與直線
的交點為
,求
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下列兩個命題,命題甲:平面α與平面β相交;命題乙:相交直線l,m都在平面α內,并且都不在平面β內,直線l,m中至少有一條與平面β相交.則甲是乙的( 。
A.充分且必要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的各項均為正數,其前n項的積為
,記
,
.
(1)若數列為等比數列,數列
為等差數列,求數列
的公比.
(2)若,
,且
①求數列的通項公式.
②記,那么數列
中是否存在兩項
,(s,t均為正偶數,且
),使得數列
,
,
,成等差數列?若存在,求s,t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了提升學生“數學建模”的核心素養,某校數學興趣活動小組指導老師給學生布置了一項探究任務:如圖,有一張邊長為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片作為底面,從剩余梯形
中裁出三個全等的矩形作為側面,圍成一個無蓋的三棱柱(不計損耗).
(1)若三棱柱的側面積等于底面積,求此三棱柱的底面邊長;
(2)當三棱柱的底面邊長為何值時,三棱柱的體積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,手機計步軟件迅速流行開來,這類軟件能自動記載每個人每日健步的步數,從而為科學健身提供一定的幫助.某市工會為了解該市市民每日健步走的情況,從本市市民中隨機抽取了2000名市民(其中不超過40歲的市民恰好有1000名),利用手機計步軟件統計了他們某天健步的步數,并將樣本數據分為,
,
,
,
,
,
,
,
九組(單位:千步),將抽取的不超過40歲的市民的樣本數據繪制成頻率分布直方圖如右,將40歲以上的市民的樣本數據繪制成頻數分布表如下,并利用該樣本的頻率分布估計總體的概率分布.
分組 (單位:千步) | |||||||||
頻數 | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)現規定,日健步步數不低于13000步的為“健步達人”,填寫下面列聯表,并根據列聯表判斷能否有%的把握認為是否為“健步達人”與年齡有關;
健步達人 | 非健步達人 | 總計 | |
40歲以上的市民 | |||
不超過40歲的市民 | |||
總計 |
(2)(。├脴颖酒骄鶖岛椭形粩倒烙嬙撌胁怀^40歲的市民日健步步數(單位:千步)的平均數和中位數;
(ⅱ)由頻率分布直方圖可以認為,不超過40歲的市民日健步步數(單位:千步)近似地服從正態分布
,其中
近似為樣本平均數
(每組數據取區間的中點值),
的值已求出約為
.現從該市不超過40歲的市民中隨機抽取5人,記其中日健步步數
位于
的人數為
,求
的數學期望.
參考公式:,其中
.
參考數據:
若,則
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com