【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長為2的正方形,SA=SB=SC=SD,點E,M,N分別是BC,CD,SC的中點,點P是MN上的一點.
(1)證明:EP∥平面SBD;
(2)求四棱錐S﹣ABCD的表面積.
【答案】(1)證明見解析(2).
【解析】
(1)根據已知條件可證平面EMN∥平面SBD,即可證結論;
(2)四棱錐的各側面為全等的等腰三角形,只需求出底邊的高,求出側面積,即可求出全面積.
(1)證明:連接BD,EM,EN,
∵E,M,N分別是BC,CD,SC的中點,∴EM∥BD,MN∥SD,
∵BD平面SBD,EM平面SBD,∴EM∥平面SBD,
∵SD平面SBD,MN平面SBD,∴MN∥平面SBD,
又EM平面EMN,MN平面EMN,MN∩EM=M,
∴平面EMN∥平面SBD,而EP平面EMN,
則EP∥平面SBD;
(2)解:在四棱錐S﹣ABCD中,由底面ABCD是邊長為2的正方形,
SA=SB=SC=SD,可知四棱錐S﹣ABCD是正四棱錐,
又E為BC的中點,連接SE,
則SE為四棱錐的斜高,可得,
∴四棱錐S﹣ABCD的表面積S.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=logax,g(x)=m2x2﹣2mx+1,若b>a>1,且f(b),ab=ba.
(1)求a與b的值;
(2)當x∈[0,1]時,函數g(x)的圖象與h(x)=f(x+1)+m的圖象僅有一個交點,求正實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一平面與空間四邊形的對角線
,
都平行,且交空間四邊形的邊
,
,
,
分別于
,
,
,
.
(1)求證:四邊形為平行四邊形;
(2)若是邊
的中點,
,
,異面直線
與
所成的角為60°,求線段
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了引導居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機抽取10戶同一個月的用電情況,得到統計表如下:
居民用電戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應電費多少元?
現要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數的分布列與期望;
以表中抽到的10戶作為樣本估計全市的居民用電,現從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1各條棱長均為4,且AA1⊥平面ABC,D為AA1的中點,M,N分別在線段BB1和線段CC1上,且B1M=3BM,CN=3C1N,
(1)證明:平面DMN⊥平面BB1C1C;
(2)求三棱錐B1﹣DMN的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為
(
為參數),以原點
為極點,以
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)射線與曲線
交點為
、
兩點,射線
與曲線
交于點
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,
恒成立,求實數
的取值范圍;
(2)是否同時存在實數和正整數
,使得函數
在
上恰有2019個零點
若存在,請求出所有符合條件的
和
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設雙曲線的左,右焦點分別為F1,F2,過F1的直線l交雙曲線左支于A,B兩點,則|BF2|+|AF2|的最小值為( )
A. B. 11
C. 12 D. 16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com