【題目】選修4-4:坐標系與參數方程
在極坐標系中,設圓:=4 cos 與直線l:=
(∈R)交于A,B兩點.
(Ⅰ)求以AB為直徑的圓的極坐標方程;
(Ⅱ)在圓任取一點
,在圓
上任取一點
,求
的最大值.
【答案】(1)=2(cos+sin) (2)
【解析】試題分析:(1)先根據x= cos y= sin將圓直線l極坐標方程化為直角坐標方程,再求交點A,B坐標,利用向量得以AB為直徑的圓
的直角坐標方程,最后再化為極坐標方程(2)由圓的幾何意義可得
的最大值為兩圓心距離與兩半徑之和
試題解析:(Ⅰ) 以極點為坐標原點,極軸為x軸的正半軸,建立直角坐標系,則由題意,得
圓的直角坐標方程 x2+y2-4x=0,
直線l的直角坐標方程 y=x.
由解得
或
所以A(0,0),B(2,2).
從而圓的直角坐標方程為(x-1)2+(y-1)2=2,即x2+y2=2x+2y.
將其化為極坐標方程為:2-2(cos+sin)=0,即=2(cos+sin).
(Ⅱ)∵
∴.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (a∈R).
(Ⅰ)求f(x)的單調區間與極值;
(Ⅱ)若函數f(x)的圖象與函數g(x)=1的圖象在區間(0,e2]上有兩個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856264)
已知函數f(x)=aln x,e為自然對數的底數.
(Ⅰ)曲線f(x)在點A(1,f(1))處的切線與坐標軸所圍成的三角形的面積為2,求實數a的值;
(Ⅱ)若f(x)≥1-恒成立,求實數a的值取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856289)[選修4-4:坐標系與參數方程]
直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=2(sinθ+cosθ),直線l的參數方程為: (t為參數) .
(Ⅰ)寫出圓C和直線l的普通方程;
(Ⅱ)點P為圓C上動點,求點P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x)萬元,當年產量不足80千件時,C(x)=x2+10x(萬元);當年產量不少于80千件時,C(x)=51x+
-1 450(萬元).通過市場分析,若每件售價為500元時,該廠年內生產的商品能全部銷售完.
(1)寫出年利潤L(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“扶貧幫困”是中華民族的傳統美德,某校為幫扶困難同學,采用如下方式進行一次募捐:在不透明的箱子中放入大小均相同的白球七個,紅球三個,每位獻愛心的參與者投幣20元有一次摸獎機會,一次性從箱子中摸球三個(摸完球后將球放回),若有一個紅球,獎金10元,兩個紅球獎金20元,三個全是紅球獎金100元.
(1)求獻愛心參與者中將的概率;
(2)若該次募捐900位獻愛心參與者,求此次募捐所得善款的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)一位網民在網上光顧某淘寶小店,經過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網民購買
兩種商品的概率均為
,購買
兩種商品的概率均為
,購買
種商品的概率為
.假設該網民是否購買這五種商品相互獨立.
(1)求該網民至少購買4種商品的概率;
(2)用隨機變量表示該網民購買商品的種數,求
的概率分布和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設p:f(x)=在區間(1,+∞)上是減函數;q:若x1,x2是方程x2-ax-2=0的兩個實根,則不等式m2+5m-3≥|x1-x2|對任意實數a∈[-1,1]恒成立.若p不正確,q正確,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com