【題目】對一批產品的長度(單位:毫米)進行抽樣檢測,如圖為檢測結果的頻率分布直方圖.根據標準,產品長度在區間[20,25)上為一等品,在區間[15,20)和[25,30)上為二等品,在區間[10,15)和[30,35]上為三等品.用頻率估計概率,現從該批產品中隨機抽取1件,則其為二等品的概率是( )
A.0.09
B.0.20
C.0.25
D.0.45
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC= .等邊三角形ADB以AB為軸運動.
(1)當平面ADB⊥平面ABC時,求CD;
(2)當△ADB轉動時,是否總有AB⊥CD?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】利用隨機數表法對一個容量為500編號為000,001,002,…,499的產品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第12行第5列的數開始向右讀數,(下面摘取了隨機數表中的第11行至第15行),根據下圖,讀出的第3個數是( )
A.841
B.114
C.014
D.146
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知二面角α﹣MN﹣β的大小為60°,菱形ABCD在面β內,A、B兩點在棱MN上,∠BAD=60°,E是AB的中點,DO⊥面α,垂足為O.
(1)證明:AB⊥平面ODE;
(2)求異面直線BC與OD所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,ABCD﹣A1B1C1D1為正方體,下面結論錯誤的是( )
A.BD∥平面CB1D1
B.AC1⊥BD
C.異面直線AD與CB1角為60°
D.AC1⊥平面CB1D1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,建立空間直角坐標系Dxyz,已知正方體ABCD﹣A1B1C1D1的棱長為1,點M是正方體對角線D1B的中點,點N在棱CC1上.
(1)當2|C1N|=|NC|時,求|MN|;
(2)當點N在棱CC1上移動時,求|MN|的最小值并求此時的N點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若定義運算: ;,例如23=3,則下列等式不能成立的是( )
A.ab=ba
B.(ab)c=a(bc)
C.(ab)2=a2b2
D.c(ab)=(ca)(cb)(c>0)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com