【題目】已知函數f(x)=cos xsin 2x,下列結論中正確的是________(填入正確結論的序號).
①y=f(x)的圖象關于點(2π,0)中心對稱;
②y=f(x)的圖象關于直線x=π對稱;
③f(x)的最大值為;
④f(x)既是奇函數,又是周期函數.
【答案】①④
【解析】依題意,對于①,f(4π-x)=cos(4π-x)·sin[2(4π-x)]=-cos x·sin 2x=-f(x),因此函數y=f(x)的圖象關于點(2π,0)中心對稱,①正確;對于②,f=
,f
=-
,因此f
≠f
,函數y=f(x)的圖象不關于直線x=π對稱,②不正確;對于③,f(x)=2sin xcos2x=2(sin x-sin3x);令t=sin x,則y=2(t-t3),t∈[-1,1],y′=2(1-3t2),當-
<t<
時,y′>0;當-1≤t<-
或
<t≤1時,y′<0,因此函數y=2(t-t3)在[-1,1]上的最大值是y=2
=
,即函數f(x)的最大值是
,③不正確;對于④,f(-x)=-f(x),且f(2π+x)=2sin(2π+x)cos2(2π+x)=2sin xcos2x=f(x),因此函數f(x)既是奇函數,又是周期函數,④正確.綜上所述,其中正確的結論是①④.
科目:高中數學 來源: 題型:
【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費標準是每車每次不超過兩小時免費,超過兩小時的部分每小時2元(不足1小時的部分按1小時計算).甲乙兩人相互獨立租車(各租一車一次).設甲、乙不超過兩小時還車的概率分別為,
;兩小時以上且不超過三小時還車的概率分別為
,
;兩人租車時間都不會超過四小時.
(1)求出甲、乙所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求隨機變量
的概率分布和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓:
經過橢圓
:
(
)的左右焦點
,
,與橢圓
在第一象限的交點為
,且
,
,
三點共線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設與直線(
為原點)平行的直線
交橢圓
于
,
兩點.當
的面積取到最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數圖象上點
處的切線方程與直線
平行(其中
),
.
(Ⅰ)求函數的解析式;
(Ⅱ)求函數在
(
)上的最小值;
(Ⅲ)對一切,
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點D、E,BC的延長線于⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若,CE∶EB=1∶4,求CE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中,正確的有( )
①函數y=的定義域為{x|x≥1};
②函數y=x2+x+1在(0,+∞)上是增函數;
③函數f(x)=x3+1(x∈R),若f(a)=2,則f(-a)=-2;
④已知f(x)是R上的增函數,若a+b>0,則有f(a)+f(b)>f(-a)+f(-b).
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數莖葉圖如下:
(1)求甲命中個數的中位數和乙命中個數的眾數;
(2)通過計算,比較甲乙兩人的罰球水平.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
﹥
﹥0)的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓的方程;
(2)設直線與橢圓
交于
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com