精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數莖葉圖如下:

(1)求甲命中個數的中位數和乙命中個數的眾數;

(2)通過計算,比較甲乙兩人的罰球水平.

【答案】1;(2)甲乙兩人的罰球水平相當,但乙比甲穩定.

【解析】試題分析:(1)將甲、乙的命中個數從小到大排列,根據平均數的計算公式和眾數的概念,即可求解甲命中個數的中位數和乙命中個數的眾數;(2)利用公式求解甲乙的平均數與方差,即可比較甲乙兩人的罰球水平.

試題解析:(1)將甲的命中個數從小到大排列為5,8,9,11,16,17,中位數為,

將乙的命中個數從小到大排列為6,9,10,12,12,17,眾數為12

2)記甲、乙命中個數的平均數分別為,

,

,

甲乙兩人的罰球水平相當,但乙比甲穩定.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在某地區某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區居眾顯示可以過正常生活,有公共衛生專家建議的指標是“連續7天每天新增感染人數不超過5人”,根據連續7天的新增病例數計算,下列各選項中,一定符合上述指標的是( )

平均數≤3;標準差S≤2;平均數≤3且標準差S≤2;平均數≤3且極差小于或等于2;眾數等于1且極差小于或等于1.

A.①② B.③④

C.③④⑤ D.④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos xsin 2x,下列結論中正確的是________(填入正確結論的序號).

①y=f(x)的圖象關于點(2π,0)中心對稱;

②y=f(x)的圖象關于直線x=π對稱;

③f(x)的最大值為

④f(x)既是奇函數,又是周期函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高二年級學生中隨機抽取60名學生,將其期中考試的政治成績(均為整數)分成六段: , , ,…后得到如下頻率分布直方圖.

(1)根據頻率分布直方圖,估計該校高二年級學生期中考試政治成績的平均分、眾數、中位數;(小數點后保留一位有效數字)

(2)用分層抽樣的方法在各分數段的學生中抽取一個容量為20的樣本,則各分數段抽取的人數分別是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓1(a>b>0)的離心率e,連結橢圓的四個頂點得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設直線l與橢圓相交于不同的兩點AB.已知點A的坐標為(a,0).若|AB|,求直線l的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資,根據長期收益率市場預測投資類產品的收益與投資額成正比,投資類產品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產品的收益分別為0125萬元和05萬元

1分別寫出兩類產品的收益與投資額的函數關系;

2該家庭有20萬元資金全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)axx2xlna,a>1.

(1)求證:函數f(x)(0,+∞)上單調遞增;

(2)對任意x1,x2∈[1,1]|f(x1)f(x2)|≤e1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知矩形所在的平面, 分別為的中點, .

(1)求證: 平面;

(2)求與面所成角大小的正弦值;

(3)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形, ,且.

(1)求證: 平面平面;

(2)是棱的中點,求證:平面

(3)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视