精英家教網 > 高中數學 > 題目詳情

【題目】我國古代典籍《周易》用描述萬物的變化,每一卦由六爻組成.其中有一種起卦方法稱為金錢起卦法,其做法為:取三枚相同的錢幣合于雙手中,上下搖動數下使錢幣翻滾摩擦,再隨意拋撒錢幣到桌面或平盤等硬物上,如此重復六次,得到六爻.若三枚錢幣全部正面向上或全部反面向上,就稱為變爻.若每一枚錢幣正面向上的概率為,則一卦中恰有兩個變爻的概率為(

A.B.C.D.

【答案】D

【解析】

根據古典概型求得三枚錢幣全部正面或反面向上的概率,求一卦中恰有兩個變爻的概率實際為求六次獨立重復試驗中發生兩次的概率,根據獨立重復試驗的概率求得其值.

由已知可得三枚錢幣全部正面或反面向上的概率,求一卦中恰有兩個變爻的概率實際為求六次獨立重復試驗中發生兩次的概率,

故選:D.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在極坐標系中,直線的極坐標方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為,(為參數).

1)請寫出直線的參數方程;

2)求直線與曲線交點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業有甲、乙兩套設備生產同一種產品,為了檢測兩套設備的生產質量情況,隨機從兩套設備生產的大量產品中各抽取了50件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內,則為合格品,否則為不合格品. 表1是甲套設備的樣本的頻數分布表,圖1是乙套設備的樣本的頻率分布直方圖.

表1:甲套設備的樣本的頻數分布表

質量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數

1

4

19

20

5

1

圖1:乙套設備的樣本的頻率分布直方圖

(1)填寫下面列聯表,并根據列聯表判斷是否有90%的把握認為該企業生產的這種產品的質量指標值與甲、乙兩套設備的選擇有關;

甲套設備

乙套設備

合計

合格品

不合格品

合計

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C:)的左頂點為A,離心率為,點在橢圓C.

1)求橢圓C的方程;

2)若直線)與橢圓C交于E,F兩點,直線,分別與y軸交于點M,N,求證:x軸上存在點P,使得無論非零實數k怎樣變化,以為直徑的圓都必過點P,并求出點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列,,的前項和分別為,,,且對任意的都有,已知,數列是公差不為0的等差數列,且各項均為非負整數.

1)求證:數列是等差數列;

2)若數列的前4項刪去1項后按原來順序成等比數列,求所有滿足條件的數列;

3)若,且,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據氣象部門預報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風暴中心B正以30km/h的速度向正北方向移動,距離風暴中心450km以內的地區都將受到影響,從現在起經過___小時后該碼頭A將受到熱帶風暴的影響(精確到0.01).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,,是橢圓上三個不同的點,F為其右焦點,且,成等差數列

1)求橢圓的方程;

2)求的值;

3)若線段AC的垂直平分線與x軸交點為D,求直線BD的斜率k.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是(

A.若等比數列的前項和為,則,也成等比數列.

B.命題的極值點,則的逆命題是真命題.

C.為真命題為真命題的充分不必要條件.

D.命題,使得的否定是:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱柱ABCDA1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.

1)證明:ACB1D.

2)求BC1與平面B1C1D所成角的正弦值.

查看答案和解析>>
久久精品免费一区二区视