精英家教網 > 高中數學 > 題目詳情

已知函數, 上為增函數,且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調增函數,求的取值范圍;
(3)設,若在上至少存在一個,使得成立,求的取值范圍.

(1);(2); (3)

解析試題分析:(1)上為增函數,則上恒成立,即上恒成立.由于分母恒大于0,故上恒成立,而這只需 的最小值即可.由此可得的取值范圍;
(2)上為單調增函數,則其導數大于等于0在恒成立,變形得恒成立.與(1)題不同的是,這里不便求的最小值,故考慮分離參數,即變形為.這樣只需大于等于的最大值即可.而,所以;
(3)構造新函數,這樣問題轉化為:在上至少存在一個,使得成立,求的取值范圍.而這只要的最大值大于0即可.
試題解析:(1)∵上為增函數
上恒成立,即上恒成立

上恒成立                     2分
只須,即,由            3分
    ∴                        4分
(2)由(1)問得

上為單調增函數
恒成立                      6分
,而
恒成立時有,即函數上為單調增函數時,的范圍為;                       8分
(3)由(1)問可知,,可以構造新函數              10分
①.當時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調遞減區間;
(2)若在區間上的最大值為,求它在該區間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,某小區有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數的圖象,且點M到邊OA距離為

(1)當時,求直路所在的直線方程;
(2)當為何值時,地塊OABC在直路不含泳池那側的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知實數函數為自然對數的底數).
(Ⅰ)求函數的單調區間及最小值;
(Ⅱ)若對任意的恒成立,求實數的值;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中,
(Ⅰ)若的最小值為,試判斷函數的零點個數,并說明理由;
(Ⅱ)若函數的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ).求函數的單調區間及的取值范圍;
(Ⅱ).若函數有兩個極值點的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設a為實數,函數f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調區間與極值;
(Ⅱ)求證:當a>ln2-1且x>0時,ex>x2-2ax+1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底)
(1)求的最小值;
(2)設不等式的解集為,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)當時,求函數的單調區間;
(Ⅱ)若,對定義域內任意x,均有恒成立,求實數a的取值范圍?
(Ⅲ)證明:對任意的正整數恒成立。

查看答案和解析>>
久久精品免费一区二区视