【題目】
函數是定義在
上的奇函數,且
。
(1)求實數a,b,并確定函數的解析式;
(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;
(3)寫出的單調減區間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若a>0,且A∩B=,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
交于
兩點.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)若點的極坐標為
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品生產廠家生產一種產品,每生產這種產品
(百臺),其總成本為
萬元
,其中固定成本為42萬元,且每生產1百臺的生產成本為15萬元
總成本
固定成本
生產成本
銷售收入
萬元
滿足
,假定該產品產銷平衡
即生產的產品都能賣掉
,根據上述條件,完成下列問題:
寫出總利潤函數
的解析式
利潤
銷售收入
總成本
;
要使工廠有盈利,求產量
的范圍;
工廠生產多少臺產品時,可使盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某葡萄基地的種植專家發現,葡萄每株的收獲量(單位:
)和與它“相近”葡萄的株數
具有線性相關關系(所謂兩株作物“相近”是指它們的直線距離不超過
),并分別記錄了相近葡萄的株數為1,2,3,4,5,6,7時,該葡萄每株收獲量的相關數據如下:
1 | 2 | 3 | 5 | 6 | 7 | |
15 | 13 | 12 | 10 | 9 | 7 | |
(1)求該葡萄每株的收獲量關于它“相近”葡萄的株數
的線性回歸方程及
的方差
;
(2)某葡萄專業種植戶種植了1000株葡萄,每株“相近”的葡萄株數按2株計算,當年的葡萄價格按10元/ 投入市場,利用上述回歸方程估算該專業戶的經濟收入為多少萬元;(精確到0.01)
(3)該葡萄基地在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株葡萄,其中每個小正方形的面積都為,現在所種葡萄中隨機選取一株,求它的收獲量的分布列與數學期望.(注:每株收獲量以線性回歸方程計算所得數據四舍五入后取的整數為依據)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,
,其中
.
(1)若是關于
的不等式
的解,求
的取值范圍;
(2)求函數在
上的最小值;
(3)若對任意的,不等式
恒成立,求
的取值范圍;
(4)當時,令
,試研究函數
的單調性,求
在該區間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,記這3人中“微信控”的人數為,試求
的分布列和數學期望.
參考公式: ,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創造利潤10萬元.為增加企業競爭力,決定優化產業結構,調整出名員工從事第三產業,調整后平均每人每年創造利潤為
萬元
,剩下的員工平均每人每年創造的利潤可以提高
.
(1)若要保證剩余員工創造的年總利潤不低于原來1000名員工創造的年總利潤,則最多調整出多少名員工從事第三產業?
(2)若要保證剩余員工創造的年總利潤不低于原來1000名員工創造的年總利潤條件下,若要求調整出的員工創造出的年總利潤始終不高于剩余員工創造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(Ⅰ)當時,求函數
在點
處的切線方程;
(Ⅱ)當時,討論
的單調性;
(Ⅲ)是否存在實數,對任意
,且
有
恒成立?
若存在,求出的取值范圍;若不存在,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com