【題目】已知四棱錐P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=AB,F,M分別是線段PC,PB的中點.
(1)在線段AB上找出一點N,使得平面CMN∥平面PAD,并給出證明過程;
(2)若PA=AB,DC=
AD,求二面角C—AF—D的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)取的中點
,連接
,取
的中點
,連接
,然后通過中位線,證明線線平行,進而得到線面平行,進而得到面面平行.(2)以
分別為
軸建立空間直角坐標系,通過計算平面
和平面
的法向量,來求得面面角的余弦值.
(1)證明:取AB的中點N,連接CN,MN,取PA的中點Q,連接QM,DQ;
在中,MQ
AB,
,而
,故AB//CD,
故QM//DC,且QM=DC,四邊形CDQM為平行四邊形,
CM//DQ,
又平面PAD,
平面PAD,
平面PAD;
∵MNPA,
平面PAD,PA
平面PAD,
MN//平面PAD;
因為,故平面CMN//平面PAD;
(2)由已知得:兩兩垂直,以
所在直線分別為
軸,
軸,
軸建立如圖所示的空間直角坐標系,設
,則
,
,
,
則,
,
,
所以,
.
設是平面
的一個法向量,則
,令
,得
.
設是平面
的一個法向量,則
,令
,
.
又二面角為銳角,故二面角
的余弦值為
.
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A.經過任意三點有且只有一個平面.
B.過點有且僅有一條直線與異面直線
垂直.
C.一條直線與一個平面平行,它就和這個平面內的任意一條直線平行.
D.面與平面
相交,則公共點個數為有限個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數(
,且
)是定義域為R的奇函數.
(1)求t的值;
(2)若,求使不等式
對一切
恒成立的實數k的取值范圍;
(3)若函數的圖象過點
,是否存在正數m(
),使函數
在
上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某客戶準備在家中安裝一套凈水系統,該系統為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.
其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現需決策安裝凈水系統的同時購買濾芯的數量,為此參考了根據100套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.
表1:一級濾芯更換頻數分布表
一級濾芯更換的個數 | 8 | 9 |
頻數 | 60 | 40 |
圖2:二級濾芯更換頻數條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發生的概率.
(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16的概率;
(2)記表示該客戶的凈水系統在使用期內需要更換的二級濾芯總數,求
的分布列及數學期望;
(3)記分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若
,且
,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】山東省于2015年設立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產保護等工作;水下考古研究中心工作站,分別設在位于劉公島的中國甲午戰爭博物院和威海市博物館。為對劉公島周邊海域水底情況進行詳細了解,然后再選擇合適的時機下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業,其用氧量包含以下三個方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為
升;
②水底作業時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;
③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.
潛水員在此次考古活動中的總用氧量為升.
(Ⅰ)如果水底作業時間是分鐘,將
表示為
的函數;
(Ⅱ)若,水底作業時間為20分鐘,求總用氧量
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方形的邊長為
,已知
,將
沿
邊折起,折起后
點在平面
上的射影為
點,則翻折后的幾何體中有如下描述:①
與
所成角的正切值為
;②
;③
;④平面
平面
,其中正確的命題序號為___________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com