【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,,8)數據作了初步處理, 得到下面的散點圖及一些統計量的值.
| | | | | | |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
其中wi= ,
=
(Ⅰ)根據散點圖判斷,y=a+bx與y=c+d 哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(Ⅰ)的判斷結果及表中數據,建立y關于x的回歸方程;
(Ⅲ)已知這種產品的年利潤z與x、y的關系為z=0.2y﹣x.根據(Ⅱ)的結果回答下列問題:
(i)年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
(ii)年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數據(u1 , v1),(u2 , v2),,(un , vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計分別為: =
,
=
﹣
.
【答案】解:(Ⅰ)由散點圖可以判斷,y=c+d 適宜作為年銷售量y關于年宣傳費x的回歸方程類型. (Ⅱ)令ω=
,先建立y關于ω的線性回歸方程.
由于d= =68,c=563﹣68×6.8=100.6,
所以y關于w的線性回歸方程為y=100.6+68w,
因此y關于x的回歸方程為y=100.6+68 .
(Ⅲ)( i)由(Ⅱ)知,當x=49時,年銷售量y的預報值y=100.6+68 =576.6,
年利潤z的預報值z=576.6×0.2﹣49=66.32.(8分)
( ii)根據(Ⅱ)的結果知,年利潤z的預報值z=0.2(100.6+68 )﹣x=﹣x+13.6
+20.12,
當 =6.8時,年利潤的預報值最大.
故年宣傳費為46.24千元時,年利潤的預報值最大.
【解析】(Ⅰ)根據散點圖,即可判斷出,(Ⅱ)先建立中間量ω= ,建立y關于w的線性回歸方程,根據公式求出w,問題得以解決;(Ⅲ)(i)年宣傳費x=49時,代入到回歸方程,計算即可,(ii)求出預報值得方程,根據函數的性質,即可求出.
科目:高中數學 來源: 題型:
【題目】已知直線的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(Ⅰ)求點的坐標;
(Ⅱ)證明直線恒過定點,并求這個定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場欲經銷某種商品,考慮到不同顧客的喜好,決定同時銷售A、B兩個品牌,根據生產廠家營銷策略,結合本地區以往經銷該商品的大數據統計分析,A品牌的銷售利潤y1與投入資金x成正比,其關系如圖1所示,B品牌的銷售利潤y2與投入資金x的算術平方根成正比,其關系如圖2所示(利潤與資金的單位:萬元).
(1)分別將A、B兩個品牌的銷售利潤y1、y2表示為投入資金x的函數關系式;
(2)該商場計劃投入5萬元經銷該種商品,并全部投入A、B兩個品牌,問:怎樣分配這5萬元資金,才能使經銷該種商品獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足an=2an-1-2n+5,(n∈N且n≥2),a1=1,
(I)若bn=an-2n+1,求證數列{bn}(n∈N*)是常數列,并求{an}的通項;
(II)若Sn是數列{an}的前n項和,又cn=(-1)nSn,且{Cn}的前n項和Tn>tn2在n∈N*時恒成立,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商區停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現有甲、乙二人在該商區臨時停車,兩人停車都不超過4小時. (Ⅰ)若甲停車1小時以上且不超過2小時的概率為 ,停車付費多于14元的概率為
,求甲停車付費恰為6元的概率;
(Ⅱ)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的可導函數f(x)的導函數為f′(x),滿足f′(x)>f(x),且f(x+2)為奇函數,f(4)=﹣1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx﹣cos2x+
,(x∈R).
(1)若對任意x∈[﹣ ,
],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點縱坐標不變,橫坐標變為原來的2倍,然后再向左平移 個單位得到函數y=g(x)的圖象,求函數y=g(x)﹣
在區間[﹣2π,4π]內的所有零點之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)當a= 時,求函數f(x)的單調區間;
(2)設g(x)=(x2﹣2x)ex , 如果對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com