精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線 的參數方程為 為參數),直線 的參數方程為 為參數).
(Ⅰ)求曲線 和直線 的普通方程;
(Ⅱ)若點 為曲線 上一點,求點 到直線 的距離的最大值.

【答案】解:(Ⅰ)消去參數 可得曲線 的普通方程 ,
消去參數 可得直線 的普通方程為 ;
(Ⅱ)∵點 為曲線 上一點,
∴點 的坐標為 ,
根據點到直線的距離公式,得
.

【解析】(1)利用cos2θ+sin2θ=1可得曲線C的直角坐標方程.消去參數t可得:直線l的直角坐標方程.
(2)設P(2cosθ,sinθ),直線l為 x y + 4 = 0 ,利用點到直線的距離公式、三角函數的單調性即可得出.
【考點精析】本題主要考查了橢圓的參數方程的相關知識點,需要掌握橢圓的參數方程可表示為才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2+bx+1(a,b為實數,a≠0,x∈R).
(1)若函數f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當x∈[-1,2]時,g(x)=f(x)-kx是單調函數,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=aln x-bx2 , a,b∈R.
(1)若f(x)在x=1處與直線y=- 相切,求a,b的值;
(2)在(1)的條件下,求f(x)在 上的最大值;
(3)若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且點 滿足條件 ,若點 關于直線 的對稱點是 ,則線段 的最小值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 則方程 的根的個數為( )
A.5
B.4
C.1
D.無數多個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓 )的焦距與橢圓 的短軸長相等,且 的長軸長相等,這兩個橢圓在第一象限的交點為 ,直線 經過 軸正半軸上的頂點 且與直線 為坐標原點)垂直, 的另一個交點為 , 交于 兩點.

(1)求 的標準方程;
(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 ,其中 ,若存在唯一的整數 ,使得 ,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點 在線段 上,且 .

(Ⅰ)證明:平面 平面 ;
(Ⅱ)求二面角 的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视