精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數,e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;(2)若存在x使不等式>成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.
(1) a=1.(2) (-∞,0).(3)詳見解析.

試題分析:(1)求出交點,切線平行即導數值相等可解;(2)轉化為新函數,求出導數,利用單調性極值解;(3)構造新函數求導,利用單調性證明.
試題解析:(1)f(x)與坐標軸的交點為(0,a),f′(0)=a,g(x)與坐標軸的交點為(a,0),g′(a)=.
∴a=,得a=±1,又a>0,故a=1.
(2>可化為m<x-ex.令h(x)=x-ex,則h′(x)=1-()ex.
∵x>0,∴,ex>1()ex>1.故h′(x)<0.
∴h(x)在(0,+∞)上是減函數,因此h(x)<h(0)=0.    ∴實數m的取值范圍是(-∞,0).
(3)y=f(x)與y=g(x)的公共定義域為(0,+∞),|f(x)-g(x)|=|ex-lnx|=ex-lnx.
令h(x)=ex-x-1,則h′(x)=ex-1>0.∴h(x)在(0,+∞)上是增函數.
故h(x)>h(0)=0,即ex-1>x.  、
令m(x)=lnx-x+1,則m′(x)=-1.
當x>1時,m′(x)<0,當0<x<1時,m′(x)>0.∴m(x)有最大值m(1)=0,因此lnx+1<x. 、
由①②,得ex-1>lnx+1,即ex-lnx>2.   
∴函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2. 
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,為函數的導函數.
(1)設函數f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數,求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數有極小值
(Ⅰ)求實數的值;
(Ⅱ)若,且對任意恒成立,求的最大值為.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)若函數的圖象在處的切線斜率為,求實數的值;
(2)在(1)的條件下,求函數的單調區間;
(3)若函數上是減函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現要在矩形區域內沿直線將接通.已知,,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設所成的小于的角為

(Ⅰ)求矩形區域內的排管費用關于的函數關系式;
(Ⅱ)求排管的最小費用及相應的角

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若函數在區間上存在極值點,求實數的取值范圍;
(2)當時,不等式恒成立,求實數的取值范圍;
(3)求證:.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數(其中,),且函數的圖象在點處的切線與函數的圖象在點處的切線重合.
(Ⅰ)求實數a,b的值;
(Ⅱ)若,滿足,求實數的取值范圍;
(Ⅲ)若,試探究的大小,并說明你的理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若時,關于的方程有唯一解,求的值;
(3)當時,證明: 對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數的導函數為,且滿足關系式,則的值等于(   )
A.2B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视