【題目】下列四組中的函數f(x)與g(x),是同一函數的是( )
A.f(x)=ln(1﹣x)+ln(1+x),g(x)=ln(1﹣x2)
B.f(x)=lgx2 , g(x)=2lgx
C.f(x)= ?
,g(x)=
D.f(x)= ,g(x)=x+1
【答案】A
【解析】解:對于A,f(x)=ln(1﹣x)+ln(1+x)=ln(1﹣x2)(﹣1<x<1),
與g(x)=ln(1﹣x2)(﹣1<x<1)的定義域相同,對應關系也相同,是同一函數;
對于B,f(x)=lgx2=2lg|x|(x≠0),
與g(x)=2lgx(x>0)的定義域不同,不是同一函數;
對于C,f(x)=
=
(x≥1),
與g(x)= (x≤﹣1或x≥1)的定義域不同,不是同一函數;
對于D,f(x)= =x+1(x≠1),
與g(x)=x+1(x∈R)的定義域不同,不是同一函數.
故選:A.
【考點精析】關于本題考查的判斷兩個函數是否為同一函數,需要了解只有定義域和對應法則二者完全相同的函數才是同一函數才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是二次函數,頂點為(﹣1,﹣4),且與x軸的交點為(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在區間[﹣2,2]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某活動小組為了估計裝有5個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共20組進行摸球實驗.其中一位學生摸球,另一位學生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做400次試驗,匯兌起來后,摸到紅球次數為6000次.
(1)估計從袋中任意摸出一個球,恰好是紅球的概率是 ;
(2)請你估計袋中紅球接近 個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若直角坐標平面內的兩個點P和Q滿足條件:①P和Q都在函數y=f(x)的圖象上;②P和Q關于原點對稱,則稱點對[P,Q]是函數y=f(x)的一對“友好點對”([P,Q]與[Q,P]看作同一對“友好點對”).已知函數 ,則此函數的“友好點對”有( )
A.0對
B.1對
C.2對
D.3對
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的某產品產量與單位成本的資料如表所示:
產量x千件 | 2 | 4 | 5 | 6 | 8 |
單位成本y元/件 | 30 | 40 | 60 | 50 | 70 |
請畫出散點圖并從圖中判斷產品產量與單位成本成什么樣的關系?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】樣本a1 , a2 , a3 , …,a10的平均數為 ,樣本b1 , b2 , b3 , …,b10的平均數為
,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數為( )
A.+
B.(
+
)
C.2( +
)
D.(
+
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教育部,體育總局和共青團中央號召全國各級各類學校要廣泛,深入地開展全國億萬大,中學生陽光體育運動,為此,某校學生會對高二年級2014年9月與10月這兩個月內參加體育運動的情況進行統計,隨機抽取了100名學生作為樣本,得到這100名學生在該月參加體育運動總時間的小時數,根據此數據作出了如下的頻數和頻率的統計表和 頻率分布直方圖:
(I)求a,p的值,并補全頻率分布直方圖;
(Ⅱ)根據上述數據和直方圖,試估計運動時間在[25,55]小時的學生體育運動的平均時間;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據報道,某公司的33名職工的月工資(以元為單位)如下:
職務 | 董事長 | 副董事長 | 董事 | 總經理 | 經理 | 管理員 | 職員 |
人數 | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求該公司職工月工資的平均數、中位數、眾數;
(2)假設副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數、中位數、眾數又是什么?(精確到元)
(3)你認為哪個統計量更能反映這個公司員工的工資水平?結合此問題談一談你的看法.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個頂點都在半徑為2的球面上,PA=2PB,則這個三棱錐的三個側棱長的和的最大值為( 。
A.16
B.
C.
D.32
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com