【題目】已知全集,
,
.
(1)若,求
;
(2)若,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)當a=1時,U=R,P={x|0<x<1},Q={x|﹣2≤x≤5},由此能求出UP和(UP)∩Q.
(2)由P={x|a},Q={x|﹣2≤x≤5},P∩Q=P,得PQ,由此能求出實數a的取值范圍.
(1)當a=1時,U=R,P={x|1}={x|0<x<1},
Q={x|x2﹣3x≤10}={x|﹣2≤x≤5}.
UP={x|x≤0或x≥1},
∴(UP)∩Q={x|﹣2≤x≤0或1≤x≤5}.
(2)∵P={x|a},Q={x|﹣2≤x≤5},P∩Q=P,
∴PQ,
當x>0時,P={x|0<x},由PQ,得a
,
當x≤0時,PQ不成立.
綜上,實數a的取值范圍是[,+∞).
科目:高中數學 來源: 題型:
【題目】在極坐標系中,過曲線外的一點
(其中
,
為銳角)作平行于
的直線
與曲線分別交于
.
(Ⅰ) 寫出曲線和直線
的普通方程(以極點為原點,極軸為
軸的正半軸建系);
(Ⅱ)若成等比數列,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數,試判斷
是否為“
類函數”?并說明理由;
(2)設是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知(
,
),
,且函數
圖像上的任意兩條對稱軸之間距離的最小值是
.
(1)求的值和
的單調增區間;
(2)將函數的圖像向右平移
個單位后,得到函數
的圖像,求函數
在
上的最值,并求取得最值時的
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設中心在原點,焦點在軸上的橢圓
過點
,且離心率為
.
為
的右焦點,
為
上一點,
軸,
的半徑為
.
(1)求和
的方程;
(2)若直線與
交于
兩點,與
交于
兩點,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)若的值域為
,求
的值;
(Ⅱ)巳,是否存在這祥的實數
,使函數
在區間
內有且只有一個零點.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】水庫的蓄水量隨時間而變化,現用t表示時間,以月為單位,年初為起點(用t表示第t月份,),根據歷年數據,某水庫的蓄水量V(單位:億立方米)與時間t的近似函數關系為:當0<t≤10時,
;當10<t≤12時,
;若2月份該水庫的蓄水量為33.6億立方米.
(1)求實數a的值;
(2)求一年內該水庫的最大蓄水量.
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在
處的切線方程;
(2)是否存在非負整數,使得函數
是單調函數,若存在,求出
的值;若不存在,請說明理由;
(3)已知,若存在
,使得當
時,
的最小值是
,求實數
的取值范圍.(注:自然對數的底數
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的前
項和為
,對任意
,點
都在函數
的圖象上.
(1)求,歸納數列
的通項公式(不必證明).
(2)將數列依次按
項、
項、
項、
項、
項循環地分為
,
,
,
,各個括號內各數之和,設由這些和按原來括號的前后順序構成的數列為
,求
的值.
(3)設為數列
的前
項積,若不等式
對一切
都成立,其中
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com