已知a為實數,。
⑴求導數;
⑵若,求
在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是遞增的,求a的取值范圍。
⑴
⑵f(x)在[-2,2]上的最大值為最小值為
⑶a的取值范圍是[-2,2].
解析試題分析:⑴由原式得∴
⑵由 得
,此時有
.
由得
或x="-1" , 又
所以f(x)在[-2,2]上的最大值為最小值為
⑶解法一:的圖象為開口向上且過點(0,-4)的拋物線,由條件得
即 ∴-2≤a≤2.
所以a的取值范圍為[-2,2].
解法二:令即
由求根公式得:
所以在
和
上非負.
由題意可知,當x≤-2或x≥2時, ≥0,
從而x1≥-2, x2≤2,
即 解不等式組得-2≤a≤2.
∴a的取值范圍是[-2,2].
考點:導數計算,利用導數研究函數的單調性、極值、最值。
點評:中檔題,此類問題較為典型,是導數應用的基本問題。在某區間,導函數值非負,函數為增函數,導函數值非正,函數為減函數。求最值應遵循“求導數,求駐點,計算極值及端點函數值,比較確定最值”。
科目:高中數學 來源: 題型:解答題
已知函數
(1)當時,求
在
上的最小值;
(2)若函數在
上為增函數,求正實數
的取值范圍;
(3)若關于的方程
在區間
內恰有兩個相異的實根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函 數.
(1)若曲線在點
處的切線與直線
垂直,求函數
的單調區間;
(2)若對于都有
成立,試求
的取值范圍;
(3)記.當
時,函數
在區間
上有兩個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
市內電話費是這樣規定的,每打一次電話不超過3分鐘付電話費0.18元,超過3分鐘而不超過6分鐘的付電話費0.36元,依次類推,每次打電話分鐘應付話費y元,寫出函數解析式并畫出函數圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=ax3+bx2-x(x∈R,a、b是常數,a≠0),且當x=1和x=2時,函數f(x)取得極值.(I)求函數f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=有兩個不同的交點,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com