【題目】已知拋物線,過
的直線
與拋物線C交于
兩點,點A在第一象限,拋物線C在
兩點處的切線相互垂直.
(1)求拋物線C的標準方程;
(2)若點P為拋物線C上異于的點,直線
均不與
軸平行,且直線AP和BP交拋物線C的準線分別于
兩點,
.
(i)求直線的斜率;
(ⅱ)求的最小值.
【答案】(1);(2)(i)
;(ⅱ)4.
【解析】
(1)利用導數的幾何意義分別求得處切線的斜率,再根據斜率相乘為
,可得
的值,即可得答案;
(2)(i)根據可得點
橫坐標的關系,再結合韋達定理,可求得斜率;
(ii)由(i)易知,設
,則
,再分別求出點
的橫坐標用
表示,利用換元法可求得
的最值.
(1)設.
拋物線C的方程可化為.
拋物線C在兩點處的切線的斜率分別為
.
由題可知直線l的斜率存在,故可設直線1的方程為,
聯立,消去y可得
,
.
,解得
.
∴拋物線C的標準方程為;
(2)(i)由(1)可得
由,可得
,
又點A在第一象限,解得.
∴直線AB的斜率為;
(ii)由(i)易知.
設,則
.
由題可知,故
且
.
∴直線AP的斜率,同理可得
.
∴直線,當
時,
.
直線,當
時,
.
.
令,
當且僅當,即
,也即
或
時,
取得最小值4.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知四邊形ABCD是邊長為2的正方形,平面ABCD,E是棱PB的中點,且過AE和AD的平面
與棱PC交于點F.
(1)求證:;
(2)若平面平面PBC,求線段PA的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:高了! 觀眾甲:
主持人:低了! 觀眾甲:
主持人:低了! 則此商品價格所在的區間是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據此,某網站調查了人們對生態文明建設的關注情況,調查數據表明,參與調查的人員中關注生態文明建設的約占80%.現從參與調查的關注生態文明建設的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65],得到的頻率分布直方圖如圖所示.
(Ⅰ)求這200人的平均年齡(每一組用該組區間的中點值作為代表)和年齡的中位數(保留一位小數);
(Ⅱ)現在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求抽取的3人中恰有2人的年齡在第2組中的概率;
(Ⅲ)若從所有參與調查的人(人數很多)中任意選出3人,設這3人中關注生態文明建設的人數為X,求隨機變量X的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點為拋物線
,點
為焦點,過點
的直線交拋物線于
兩點,點
在拋物線上,使得
的重心
在
軸上,直線
交
軸于點
,且
在點
右側.記
的面積為
.
(1)求的值及拋物線的標準方程;
(2)求的最小值及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某企業中隨機抽取了5名員工測試他們的藝術愛好指數和創新靈感指數
,統計結果如下表(注:指數值越高素質越優秀):
(1)求創新靈感指數關于藝術愛好指數
的線性回歸方程;
(2)企業為提高員工的藝術愛好指數,要求員工選擇音樂和繪畫中的一種進行培訓,培訓音樂次數對藝術愛好指數
的提高量為
,培訓繪畫次數
對藝術愛好指數
的提高量為
,其中
為參加培訓的某員工已達到的藝術愛好指數.藝術愛好指數已達到3的員工甲選擇參加音樂培訓,藝術愛好指數已達到4的員工乙選擇參加繪畫培訓,在他們都培訓了20次后,估計誰的創新靈感指數更高?
參考公式:回歸方程中,
,
.
參考數據:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產不同規格的一種產品,根據檢測標準,其合格產品的質量y(g)與尺寸x(mm)之間近似滿足關系式c為大于0的常數).按照某項指標測定,當產品質量與尺寸的比在區間
內時為優等品.現隨機抽取6件合格產品,測得數據如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)現從抽取的6件合格產品中再任選3件,記ξ為取到優等品的件數,試求隨機變量ξ的分布列和期望;
(2)根據測得數據作了初步處理,得相關統計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根據所給統計量,求y關于x的回歸方程.
附:對于樣本,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com