【題目】某校舉行了一次考試,從學生中隨機選取了人的成績作為樣本進行統計.已知這些學生的成績全部在
分至
分之間,現將成績按如下方式分成
組:第一組
,第二組
,.......,第六組
,并據此繪制了如圖所示的頻率分布直方圖.
(1)估計這次月考數學成績的平均分和眾數;
(2)從成績大于等于分的學生中隨機抽取
人,求至少有
名學生的成績在
內的概率.
科目:高中數學 來源: 題型:
【題目】2020年1月22日,國新辦發布消息:新型冠狀病毒來源于武漢一家海鮮市場非法銷售的野生動.專家通過全基因組比對發現此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達到70%和40%的序列相似性.這種新型冠狀病毒對人們的健康生命帶來了嚴重威脅因此,某生物疫苗研究所加緊對新型冠狀病毒疫苗進行實驗,并將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統計數據如下:
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
(1)求列聯表中的數據
,
,
,
的值;
(2)能否有99.9%把握認為注射此種疫苗對預防新型冠狀病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x),當年產量不足80千件時,C(x)=x2+10x(萬元).當年產量不小于80千件時,C(x)=51x+
-1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數解析式;
(2)當年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《情境》劉曉紅同學在做達標訓練的課外作業時,遇到一個如何用五點法作出正弦型函數在長度為一個周期的閉區間上的圖象及圖象之間如何進行變換的問題,她犯愁了.
《問題》設函數的周期為
,且圖象過點
.
(1)求與
的值;
(2)用五點法作函數在長度為一個周期的閉區間上的圖象;
(3)敘述函數的圖象可由函數
的圖象經過怎樣的變換而得到.
由于劉曉紅對上述問題還沒有掌握解決方法及解題概念和步驟,導致無從下手,于是她請教了班上的學習委員張倩同學給她做了如下點撥:
用五點法作出在一個周期的閉區間上的圖象,首先要列表并分別令相位、
、
、
、
,再解出對應的
、
的值,得出坐標
,然后描點,最后畫出圖象.而由函數
的圖象變到函數
的圖象主要有兩種途徑:①按物理量初相
,周期
,振幅
的順序變換;②按物理量周期
,初相
,振幅
的順序變換.要注意兩者操作的區別,防止出錯.
經過張倩耐心而細致的解釋,劉曉紅豁然開朗,并對該題解答如下:
(注意:解答第(3)問時,要按照題中要求,寫出兩種變換過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年開始,直播答題突然就火了,在某場活動中,最終僅有23人平分100萬獎金,這23人可以說是“學霸”級的大神.但隨著直播答題的發展,其模式的可持續性受到了質疑,某網戰隨機選取500名網民進行了調查,得到的數據如下表:
男 | 女 | |
認為直播答題模式可持續 | 180 | 140 |
認為直播答題模式不可持續 | 120 | 60 |
(1)根據表格中的數據,用獨立性檢驗的思維方法判斷是否有97.5%的把握認為對直播答題模式的態度與性別有關系?
(2)已知在參與調查的500人中,有15%曾參加答題游戲瓜分過獎金,而男性被調查者有12%曾參加游戲瓜分過獎金,求女性被調查者參與游戲瓜分過獎金的概率.
參考公式:
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
與圓
相切,圓心
的坐標為
.
(1)求圓的方程;
(2)設直線與圓
沒有公共點,求
的取值范圍;
(3)設直線與圓
交于
、
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答下列問題:
(1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y -5=0且與點P( -1,0)的距離是的直線方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com