【題目】已知f(x)=|x+2|﹣|2x﹣1|,M為不等式f(x)>0的解集.
(1)求M;
(2)求證:當x,y∈M時,|x+y+xy|<15.
【答案】
(1)解:f(x)= ,
當x<﹣2時,由x﹣3>0得,x>3,舍去;
當﹣2≤x≤ 時,由3x+1>0得,x>﹣
,即﹣
<x≤
;
當x> 時,由﹣x+3>0得,x<3,即
<x<3,
綜上,M=(﹣ ,3);
(2)證明:∵x,y∈M,∴|x|<3,|y|<3,
∴|x+y+xy|≤|x+y|+|xy|≤|x|+|y|+|xy|=|x|+|y|+|x||y|<3+3+3×3=15
【解析】(1)通過討論x的范圍,解關于x的不等式,求出M的范圍即可;(2)根據絕對值的性質證明即可.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】某班學生一次數學考試成績頻率分布直方圖如圖所示,數據分組依次為[70,90),[90,110),[110,130),[130,150],若成績大于等于90分的人數為36,則成績在[110,130)的人數為( )
A.12
B.9
C.15
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知是半圓
的直徑,
,
是將半圓圓周四等分的三個分點.
(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;
(2)在半圓內任取一點,求
的面積大于
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了50人,他們年齡的頻數分布及支持“生育二胎”人數如表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2乘2列聯表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15),[35,45)的被調查人中各隨機選取兩人進行調查,記選中的4人不支持“生育二胎”人數為ξ,求隨機變量ξ的分布列及數學期望;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
參考數據:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是實數,曲線y=f(x)恒與x軸相切于坐標原點.
(1)求常數b的值;
(2)當a=1時,討論函數f(x)的單調性;
(3)當0≤x≤1時關于x的不等式f(x)≥0恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)已知命題:實數
滿足
,命題
:實數
滿足方程
表示的焦點在
軸上的橢圓,且
是
的充分不必要條件,求實數
的取值范圍;
(2)設命題:關于
的不等式
的解集是
;
:函數
的定義域為
.若
是真命題,
是假命題,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
的右焦點為
,右頂點、上頂點分別為點
,
已知橢圓的焦距為
,且
.
(1)求橢圓的方程;
(2)若過點的直線
交橢圓
于
兩點,當
面積取得最大時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,A是函數f(x)=2x的圖象上的動點,過點A作直線平行于x軸,交函數g(x)=2x+2的圖象于點B,若函數f(x)=2x的圖象上存在點C使得△ABC為等邊三角形,則稱A為函數f(x)=2x上的好位置點.函數f(x)=2x上的好位置點的個數為( )
A.0
B.1
C.2
D.大于2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com